Answer:
NFC Near Field Communication
Explanation:
The Near Field Communication is a communication protocol, for extra short distance with a maximum of 10 centimeters, but usually used in 4 to 5 cm. Its intended to be used in contactless pay systems and in transportation card. Actually has been used to transfer multimedia from cell phones and other devices. The maximum data rate is around 424 kbit/s, with mean in 250 Kbp
Answer:
impulse acting on it
Explanation:
The impulse is defined as the product between the force applied to an object (F) and the time interval during which the force is applied (
):

We can prove that this is equal to the change in momentum of the object. In fact, change in momentum is given by:

where m is the mass and
is the change in velocity. Multiplying and dividing by
, we get

and since
is equal to the acceleration, a, we have

And since the product (ma) is equal to the force, we have

which corresponds to the impulse.
The density of sample is 5 g/cm3
Given:
volume of sample = 20 cm3
mass of sample = 100 grams
To Find:
density of sample
Solution: Density is the measure of how much “stuff” is in a given amount of space. For example, a block of the heavier element lead (Pb) will be denser than the softer, lighter element gold (Au). A block of Styrofoam is less dense than a brick. It is defined as mass per unit volume
density = mass/volume
d = 100/20
d = 5 g/cm3
So, density of sample is 5 g/cm3
Learn more about Density here:
brainly.com/question/1354972
#SPJ4
<h2>Answer:</h2>
The correct option is A.
A) The increased pressure, pushed the molecules closer together, and caused the marshmallow to shrink.
<h2>Explanation:</h2>
Jayden experimented, she placed the marshmallow in the syringe and sealed the end. When she depressed the plunger of the syringe, the pressure increased and pushed the molecules closer together and causes the marshmallow to shrink.
<h2 />
The new oscillation frequency of the pendulum clock is 1.14 rad/s.
The given parameters;
- <em>Mass of the pendulum, = M </em>
- <em>Length of the pendulum, = L</em>
- <em>Initial angular speed, </em>
<em> = 1 rad/s</em>
The moment of inertia of the rod about the end is given as;

The moment of inertia of the rod between the middle and the end is calculated as;
![I_f = \int\limits^L_{L/2} {r^2\frac{M}{L} } \, dr = \frac{M}{3L} [r^3]^L_{L/2} = \frac{M}{3L} [L^3 - \frac{L^3}{8} ] = \frac{M}{3L} [\frac{7L^3}{8} ]= \frac{7ML^2}{24}](https://tex.z-dn.net/?f=I_f%20%3D%20%5Cint%5Climits%5EL_%7BL%2F2%7D%20%7Br%5E2%5Cfrac%7BM%7D%7BL%7D%20%7D%20%5C%2C%20dr%20%3D%20%5Cfrac%7BM%7D%7B3L%7D%20%5Br%5E3%5D%5EL_%7BL%2F2%7D%20%3D%20%20%5Cfrac%7BM%7D%7B3L%7D%20%5BL%5E3%20-%20%5Cfrac%7BL%5E3%7D%7B8%7D%20%5D%20%3D%20%5Cfrac%7BM%7D%7B3L%7D%20%5B%5Cfrac%7B7L%5E3%7D%7B8%7D%20%5D%3D%20%5Cfrac%7B7ML%5E2%7D%7B24%7D)
Apply the principle of conservation of angular momentum as shown below;

Thus, the new oscillation frequency of the pendulum clock is 1.14 rad/s.
Learn more about moment of inertia of uniform rod here: brainly.com/question/15648129