The molar mass of carbon is 12, hydrogen is 1, and
nitrogen is 14, hence the ratio are:
C = 38.65 / 12 = 3.22
H = 16.25 / 1 = 16.25
N = 45.09 / 14 = 3.22
Divide the three by the lowest ratio which is 3.22:
C = 3.22 / 3.22 = 1
H = 16.25 / 3.22 = 5
N = 3.22 / 3.22 = 1
So the empirical formula is:
CHN
The question is incomplete, here is the complete question:
At elevated temperature, nitrogen dioxide decomposes to nitrogen oxide and oxygen gas

The reaction is second order for
with a rate constant of
at 300°C. If the initial [NO₂] is 0.260 M, it will take ________ s for the concentration to drop to 0.150 M
a) 1.01 b) 5.19 c) 0.299 d) 0.0880 e) 3.34
<u>Answer:</u> The time taken is 5.19 seconds
<u>Explanation:</u>
The integrated rate law equation for second order reaction follows:
![k=\frac{1}{t}\left (\frac{1}{[A]}-\frac{1}{[A]_o}\right)](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B1%7D%7Bt%7D%5Cleft%20%28%5Cfrac%7B1%7D%7B%5BA%5D%7D-%5Cfrac%7B1%7D%7B%5BA%5D_o%7D%5Cright%29)
where,
k = rate constant = 
t = time taken = ?
[A] = concentration of substance after time 't' = 0.150 M
= Initial concentration = 0.260 M
Putting values in above equation, we get:

Hence, the time taken is 5.19 seconds
Answer:
Law of Lateral Continuity The Grand Canyon.
and
he same rock layers on opposite sides of the canyon. The matching rock layers were deposited at the same time, so they are the same age.
Answer:
a. Cyclohexanone
Explanation:
The principle of IR technique is based on the <u>vibration of the bonds</u> by using the energy that is in this region of the electromagnetic spectrum. For each bond, there is <em>a specific energy that generates a specific vibration</em>. In this case, you want to study the vibration that is given in the carbonyl group C=O. Which is located around 1700 cm-1.
Now, we must remember that the <u>lower the wavenumber we will have less energy</u>. So, what we should look for in these molecules, is a carbonyl group in which less energy is needed to vibrate since we look for the molecule with a smaller wavenumber.
If we look at the structure of all the molecules we will find that in the last three we have <u>heteroatoms</u> (atoms different to carbon I hydrogen) on the right side of the carbonyl group. These atoms allow the production of <u>resonance structures</u> which makes the molecule more stable. If the molecule is more stable we will need more energy to make it vibrate and therefore greater wavenumbers.
The molecule that fulfills this condition is the <u>cyclohexanone.</u>
See figure 1
I hope it helps!