1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lawyer [7]
3 years ago
8

write and solve an equation to determine the length of a rectangular prism with a width of 4 feet ,a height of 6 feet ,and a vol

ume of 84 cubic feet
Mathematics
1 answer:
Tasya [4]3 years ago
3 0

Answer:

3.5ft

Step-by-step explanation:

To calculate the volume of something, you need to know the formula. Length x width x height. You already know the width, and the height, so you need to find the length.

4ft x 6ft x 3.5ft = 84ft^3

You might be interested in
For any triangle ABC note down the sine and cos theorems ( sinA/a= sinB/b etc..)
SCORPION-xisa [38]

Answer:

Step-by-step explanation:

Law of sines is:

(sin A) / a = (sin B) / b = (sin C) / c

Law of cosines is:

c² = a² + b² − 2ab cos C

Note that a, b, and c are interchangeable, so long as the angle in the cosine corresponds to the side on the left of the equation (for example, angle C is opposite of side c).

Also, angles of a triangle add up to 180° or π.

(i) sin(B−C) / sin(B+C)

Since A+B+C = π, B+C = π−A:

sin(B−C) / sin(π−A)

Using angle shift property:

sin(B−C) / sin A

Using angle sum/difference identity:

(sin B cos C − cos B sin C) / sin A

Distribute:

(sin B cos C) / sin A − (cos B sin C) / sin A

From law of sines, sin B / sin A = b / a, and sin C / sin A = c / a.

(b/a) cos C − (c/a) cos B

From law of cosines:

c² = a² + b² − 2ab cos C

(c/a)² = 1 + (b/a)² − 2(b/a) cos C

2(b/a) cos C = 1 + (b/a)² − (c/a)²

(b/a) cos C = ½ + ½ (b/a)² − ½ (c/a)²

Similarly:

b² = a² + c² − 2ac cos B

(b/a)² = 1 + (c/a)² − 2(c/a) cos B

2(c/a) cos B = 1 + (c/a)² − (b/a)²

(c/a) cos B = ½ + ½ (c/a)² − ½ (b/a)²

Substituting:

[ ½ + ½ (b/a)² − ½ (c/a)² ] − [ ½ + ½ (c/a)² − ½ (b/a)² ]

½ + ½ (b/a)² − ½ (c/a)² − ½ − ½ (c/a)² + ½ (b/a)²

(b/a)² − (c/a)²

(b² − c²) / a²

(ii) a (cos B + cos C)

a cos B + a cos C

From law of cosines, we know:

b² = a² + c² − 2ac cos B

2ac cos B = a² + c² − b²

a cos B = 1/(2c) (a² + c² − b²)

Similarly:

c² = a² + b² − 2ab cos C

2ab cos C = a² + b² − c²

a cos C = 1/(2b) (a² + b² − c²)

Substituting:

1/(2c) (a² + c² − b²) + 1/(2b) (a² + b² − c²)

Common denominator:

1/(2bc) (a²b + bc² − b³) + 1/(2bc) (a²c + b²c − c³)

1/(2bc) (a²b + bc² − b³ + a²c + b²c − c³)

Rearrange:

1/(2bc) [a²b + a²c + bc² + b²c − (b³ + c³)]

Factor (use sum of cubes):

1/(2bc) [a² (b + c) + bc (b + c) − (b + c)(b² − bc + c²)]

(b + c)/(2bc) [a² + bc − (b² − bc + c²)]

(b + c)/(2bc) (a² + bc − b² + bc − c²)

(b + c)/(2bc) (2bc + a² − b² − c²)

Distribute:

(b + c)/(2bc) (2bc) + (b + c)/(2bc) (a² − b² − c²)

(b + c) + (b + c)/(2bc) (a² − b² − c²)

From law of cosines, we know:

a² = b² + c² − 2bc cos A

2bc cos A = b² + c² − a²

cos A = (b² + c² − a²) / (2bc)

-cos A = (a² − b² − c²) / (2bc)

Substituting:

(b + c) + (b + c)(-cos A)

(b + c)(1 − cos A)

From half angle formula, we can rewrite this as:

2(b + c) sin²(A/2)

(iii) (b + c) cos A + (a + c) cos B + (a + b) cos C

From law of cosines, we know:

cos A = (b² + c² − a²) / (2bc)

cos B = (a² + c² − b²) / (2ac)

cos C = (a² + b² − c²) / (2ab)

Substituting:

(b + c) (b² + c² − a²) / (2bc) + (a + c) (a² + c² − b²) / (2ac) + (a + b) (a² + b² − c²) / (2ab)

Common denominator:

(ab + ac) (b² + c² − a²) / (2abc) + (ab + bc) (a² + c² − b²) / (2abc) + (ac + bc) (a² + b² − c²) / (2abc)

[(ab + ac) (b² + c² − a²) + (ab + bc) (a² + c² − b²) + (ac + bc) (a² + b² − c²)] / (2abc)

We have to distribute, which is messy.  To keep things neat, let's do this one at a time.  First, let's look at the a² terms.

-a² (ab + ac) + a² (ab + bc) + a² (ac + bc)

a² (-ab − ac + ab + bc + ac + bc)

2a²bc

Repeating for the b² terms:

b² (ab + ac) − b² (ab + bc) + b² (ac + bc)

b² (ab + ac − ab − bc + ac + bc)

2ab²c

And the c² terms:

c² (ab + ac) + c² (ab + bc) − c² (ac + bc)

c² (ab + ac + ab + bc − ac − bc)

2abc²

Substituting:

(2a²bc + 2ab²c + 2abc²) / (2abc)

2abc (a + b + c) / (2abc)

a + b + c

8 0
3 years ago
Find the solution set for this equation.
devlian [24]
Answer:
y= 0,-2

Hope this helps!
5 0
2 years ago
Ramon drives his car 150 miles in 3 hours. Find the unit rate.
erma4kov [3.2K]

Answer:

The answer is A

Step-by-step explanation:

A) Ramon drive 50 miles per hour

3 0
3 years ago
In the equation 3' = n, John claims that for any value of x, the value of n will always be greater
maw [93]

Answer:

If the equation is 3^x=n (it isnt showing up properly)

Part A: any number greater than 1 will work. Say 2.

Part B: any number less than or equal to 1.

Step-by-step explanation:

If you set x=2, 3^2=9 9>3

If you set x=0, 3^0=1 1<3

6 0
3 years ago
Find the sum of 12 out of 7 plus 8 out of 7
Viktor [21]
12/7 + 8/7 

12+8 = 20

20/7 = 2 and 6/7ths


8 0
3 years ago
Read 2 more answers
Other questions:
  • What is the height of a triangle whose base is 9 centimeters and whose area is 126 square centimeters
    7·1 answer
  • Which of the binomials below is a factor of this trinomial? x2 - x-12 A) x+6 B) x+4 C) x-4 D) x-6
    5·1 answer
  • Left-handedness occurs in about 12% of all Americans. Males are slightly more likely than females to be left-handed, with 13% of
    13·1 answer
  • Which is greater? 3/5, 33/50, 303/500, 3003/5000, 30003/50000
    7·1 answer
  • What is the value of x in the equation 3(4x-6) - 2x + 1 = 3 -(3x -6)
    5·2 answers
  • Can someone help me please
    9·1 answer
  • Can anyone solve this using the "completing the square" method? (or something similar)
    8·1 answer
  • Can i please have help with this question brainliest for corecct answer
    5·1 answer
  • Solve for the value of z :<br>5(z+4)+5(2-z)​
    5·2 answers
  • I don’t understand and I need the answer
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!