Answer:
k is 2/3 and y is -1/3 when x is -0.5.
Step-by-step explanation:
The direct variation relationship is y = kx, where k is the const. of var.
Subbing 3 for x and 2 for y, 2 = 3k, or k = 2/3.
Now, if x = -0.5, y = (2/3)(-1/2) = -1/3
k is 2/3 and y is -1/3 when x is -0.5.
Answer: 49 cm^2
Step-by-step explanation:
The length of the small pink square box will be:
L^2 = 9
L = sqrt( 9 )
L = 3
The length of the big pink square box will be:
L^2 = 16
L = sqrt( 16 )
L = 4
The length of the yellow square box will be:
4 + 3 = 7
The area of the third square box will be
A = 7^2
A = 49 cm^2
C: B:
3 0
6 9
9 18
12 27
All you had to do was plug in the value for c or b and solve. You can tell this is most likely correct because you see patterns for both variables. C is going up by threes, while b is going up by nines.
The formula for the nth term of a geometric sequence:

a₁ - the first term, r - the common ratio
![54, a_2, a_3, 128 \\ \\ a_1=54 \\ a_4=128 \\ \\ a_n=a_1 \times r^{n-1} \\ a_4=a_1 \times r^3 \\ 128=54 \times r^3 \\ \frac{128}{54}=r^3 \\ \frac{128 \div 2}{54 \div 2}=r^3 \\ \frac{64}{27}=r^3 \\ \sqrt[3]{\frac{64}{27}}=\sqrt[3]{r^3} \\ \frac{\sqrt[3]{64}}{\sqrt[3]{27}}=r \\ r=\frac{4}{3}](https://tex.z-dn.net/?f=54%2C%20a_2%2C%20a_3%2C%20128%20%5C%5C%20%5C%5C%0Aa_1%3D54%20%5C%5C%0Aa_4%3D128%20%5C%5C%20%5C%5C%0Aa_n%3Da_1%20%5Ctimes%20r%5E%7Bn-1%7D%20%5C%5C%0Aa_4%3Da_1%20%5Ctimes%20r%5E3%20%5C%5C%0A128%3D54%20%5Ctimes%20r%5E3%20%5C%5C%0A%5Cfrac%7B128%7D%7B54%7D%3Dr%5E3%20%5C%5C%20%5Cfrac%7B128%20%5Cdiv%202%7D%7B54%20%5Cdiv%202%7D%3Dr%5E3%20%5C%5C%0A%5Cfrac%7B64%7D%7B27%7D%3Dr%5E3%20%5C%5C%0A%5Csqrt%5B3%5D%7B%5Cfrac%7B64%7D%7B27%7D%7D%3D%5Csqrt%5B3%5D%7Br%5E3%7D%20%5C%5C%0A%5Cfrac%7B%5Csqrt%5B3%5D%7B64%7D%7D%7B%5Csqrt%5B3%5D%7B27%7D%7D%3Dr%20%5C%5C%0Ar%3D%5Cfrac%7B4%7D%7B3%7D)
180-34=146
146-5=141
ratio=1:4
1+4=5
141÷5=28.2
x=28.2
y=112.8
I may be wrong, ask for more opinions
-
--- O
-