Answer:
5a +20
Step-by-step explanation:
add or subtract the same variables
Part 1)
area of triangle=b*h/2
b=2.9 cm
h=9 cm
so
area=2.9*9/2-----> 13.05 cm²
the answer part 1) is 13.05 cm²
Part 2)
area of the figure=area of rectangle+area of triangle
find the area of rectangle
area rectangle=b*h
b=12 ft
h=?
tan 45=1
tan 45=h/(22-10)----------> h/10=1-------> h=10 ft
area of rectangle=12*10-----> 120 ft²
area of triangle=b*h/2
b=10 ft
h=10 ft
area of triangle=10*10/2----> 50 ft²
area of the figure=120+50----> 170 ft²
the answer Part 2) is 170 ft²
Part 3)
<span>the area of kite is half the product of the diagonals.
</span>Area=(d1*d2)/2
d1=5+5---> 10 ft
d2=16+8----> 24 ft
area=(10*24)/2----> 120 ft²
the answer Part 3) is 120 ft²
Part 4)
the area of rhombus is half the product of the diagonals.
Area=(d1*d2)/2
d1=6+6---> 12 m
d2=6+6----> 12 m
area=(12*12)/2----> 72 m²
the answer part 4) is 72 m²
Part 5)
area of the figure=6*area of one triangle
area of triangle=b*h/2
b=4 cm
is an equilateral triangle
applying the Pythagoras theorem
h²=4²-2²-----> h²=12-----> h=2√3 cm
area of triangle=4*2√3/2----> 4√3 cm²
area of hexagon=6*(4√3)----> 24√3 cm²
the answer Part 5) is 24√3 cm²
Answer:
ab - bc = 6
Step-by-step explanation:
COMPUTATION:
ab - bc = ?
(2 x -3) - (-3 x 4) = ?
(-6) - (-3 x 4) = ?
(-6) - (-12) = ?
-6 + 12 = 6
Hope this helps!
Answer:
GQ=25 units
Step-by-step explanation:
we know that
Point Q is the midpoint of GH
so
GH=GQ+QH and GQ=QH
GH=2GQ -------> equation A
we have
GH=5x-5
GQ=2x+3
substitute in the equation A and solve for x
5x-5=2(2x+3)
5x-5=4x+6
5x-4x=6+5
x=11
Find the length of GQ
GQ=2x+3
substitute the value of x
GQ=2(11)+3
GQ=25 units
The location of the vertex tells you the horizontal and vertical shift. (The parent function f(x) = x² has its vertex at the origin, (0, 0). The vertical distance of the point 1 unit left or right of the vertex in relation to the vertex tells you the vertical scale factor (stretch).
g(x) = f(x +3) -3
horizontal shift left 3
vertical shift down 3
h(x) = -3f(x)
reflection across the x-axis
vertical stretch of 3
d(x) = f(x -3) -3
horizontal shift right 3
vertical shift down 3