The probability of this occuring is 7/66
<h3>Further explanation</h3>
The probability of an event is defined as the possibility of an event occurring against sample space.
![\large { \boxed {P(A) = \frac{\text{Number of Favorable Outcomes to A}}{\text {Total Number of Outcomes}} } }](https://tex.z-dn.net/?f=%5Clarge%20%7B%20%5Cboxed%20%7BP%28A%29%20%3D%20%5Cfrac%7B%5Ctext%7BNumber%20of%20Favorable%20Outcomes%20to%20A%7D%7D%7B%5Ctext%20%7BTotal%20Number%20of%20Outcomes%7D%7D%20%7D%20%7D)
<h2>Permutation ( Arrangement )</h2>
Permutation is the number of ways to arrange objects.
![\large {\boxed {^nP_r = \frac{n!}{(n - r)!} } }](https://tex.z-dn.net/?f=%5Clarge%20%7B%5Cboxed%20%7B%5EnP_r%20%3D%20%5Cfrac%7Bn%21%7D%7B%28n%20-%20r%29%21%7D%20%7D%20%7D)
<h2>Combination ( Selection )</h2>
Combination is the number of ways to select objects.
![\large {\boxed {^nC_r = \frac{n!}{r! (n - r)!} } }](https://tex.z-dn.net/?f=%5Clarge%20%7B%5Cboxed%20%7B%5EnC_r%20%3D%20%5Cfrac%7Bn%21%7D%7Br%21%20%28n%20-%20r%29%21%7D%20%7D%20%7D)
Let us tackle the problem!
There are seven boys and five girls in a class
There are a total of 12 students.
The possibility of being elected first is a woman
<em>The probability of being choosen first is a girl P(G₁):</em>
![P(G_1) = \boxed {\frac{5}{12}}](https://tex.z-dn.net/?f=P%28G_1%29%20%3D%20%5Cboxed%20%7B%5Cfrac%7B5%7D%7B12%7D%7D)
<em>The probability of being choosen second is a boy P(B):</em>
![P(B) = \boxed {\frac{7}{11}}](https://tex.z-dn.net/?f=P%28B%29%20%3D%20%5Cboxed%20%7B%5Cfrac%7B7%7D%7B11%7D%7D)
<em>The probability of being choosen third is a girl P(G₂):</em>
![P(G_2) = \boxed {\frac{4}{10}}](https://tex.z-dn.net/?f=P%28G_2%29%20%3D%20%5Cboxed%20%7B%5Cfrac%7B4%7D%7B10%7D%7D)
<em>The probability of choosing the first student is a girl, the second student is a boy, and the third student is a girl:</em>
![\large {\boxed {P(G_1 \cap B \cap G_2) = \frac{5}{12} \times \frac{7}{11} \times \frac{4}{10} = \frac{7}{66} } }](https://tex.z-dn.net/?f=%5Clarge%20%7B%5Cboxed%20%7BP%28G_1%20%5Ccap%20B%20%5Ccap%20G_2%29%20%3D%20%5Cfrac%7B5%7D%7B12%7D%20%5Ctimes%20%5Cfrac%7B7%7D%7B11%7D%20%5Ctimes%20%5Cfrac%7B4%7D%7B10%7D%20%3D%20%5Cfrac%7B7%7D%7B66%7D%20%7D%20%7D)
We can also use permutations to get this answer.
<em>From 5 girls we will arrange 2 girls as first and third student:</em>
![^5P_2 = \frac{5!}{(5-2)!} = \frac{5!}{3!} = 4 \times 5 = \boxed{20}](https://tex.z-dn.net/?f=%5E5P_2%20%3D%20%5Cfrac%7B5%21%7D%7B%285-2%29%21%7D%20%3D%20%5Cfrac%7B5%21%7D%7B3%21%7D%20%3D%204%20%5Ctimes%205%20%3D%20%5Cboxed%7B20%7D)
<em>From 7 boys we will arrange 1 boys as second student:</em>
![^7P_1 = \frac{7!}{(7-1)!} = \frac{7!}{6!} = \boxed {7}](https://tex.z-dn.net/?f=%5E7P_1%20%3D%20%5Cfrac%7B7%21%7D%7B%287-1%29%21%7D%20%3D%20%5Cfrac%7B7%21%7D%7B6%21%7D%20%3D%20%5Cboxed%20%7B7%7D)
<em>The total number of arrangement 3 different students from total of 12 students.</em>
![^{12}P_3 = \frac{12!}{(12-3)!} = \frac{12!}{9!} = 10 \times 11 \times 12 = \boxed {1320}](https://tex.z-dn.net/?f=%5E%7B12%7DP_3%20%3D%20%5Cfrac%7B12%21%7D%7B%2812-3%29%21%7D%20%3D%20%5Cfrac%7B12%21%7D%7B9%21%7D%20%3D%2010%20%5Ctimes%2011%20%5Ctimes%2012%20%3D%20%5Cboxed%20%7B1320%7D)
<em>The probability of choosing the first student is a girl, the second student is a boy, and the third student is a girl:</em>
![\large {\boxed {P(G_1 \cap B \cap G_2) = \frac{20 \times 7}{1320} = \frac{7}{66} } }](https://tex.z-dn.net/?f=%5Clarge%20%7B%5Cboxed%20%7BP%28G_1%20%5Ccap%20B%20%5Ccap%20G_2%29%20%3D%20%5Cfrac%7B20%20%5Ctimes%207%7D%7B1320%7D%20%3D%20%5Cfrac%7B7%7D%7B66%7D%20%7D%20%7D)
<h3>Learn more</h3>
<h3>Answer details</h3>
Grade: High School
Subject: Mathematics
Chapter: Probability
Keywords: Probability , Sample , Space , Six , Dice , Die , Binomial , Distribution , Mean , Variance , Standard Deviation