Answer:
B. The father did not contribute a sex chromosome to his daughter due to nondisjunction of the sex chromosomes. The daughter is XO and her only X chromosome came from her mother, who was a carrier.
A.The mother's X chromosomes failed to separate during meiosis, and the daughter inherited two X chromosomes with the Lesch-Nyhan mutation. The father contributed no sex chromosomes.
Explanation:
As seen in the question above, a little girl was diagnosed with Lesch-Nyhan syndrome, which is an X-linked recessive condition caused by a mutation in the HPRT1 gene responsible for purine metabolism.
The little girl's parents do not have the syndrome, and no one in the little girl's paternal family presented this syndrome, however, we know that the maternal grandfather of the little girl's mother had the syndrome, which means that it was the mother's genetic material that contributed to the development of the syndrome in the little girl. This was because the little girl did not receive any X chromosomes from her father, but she inherited the two X chromosomes from her mother that coded for the Lesch-Nyhan mutation. This happened because the mother's X chromosome disjuction did not occur during meiosis I.
As shown above, the father did not contribute any sex chromosomes to his daughter, which means that the daughter is XO and her only X chromosome came from her mother, who was a carrier.
Answer:
D Microwaves
Explanation:
It has an electromagnetic radiation with wavelengths ranging from about one meter to one millimeter; with frequencies between 300 MHz (1 m) and 300 GHz (1 mm)
It is D. alliteration
Alliteration is when it has the same letter or sound
Answer:
Frequency is inversely proportional to wavelength.
Explanation:
frequency is the number of oscillations in a unit of time.
Wavelength is the length between one oscillation and the next oscillation.
take two springs and 4 pins. (springs should have loops or hooks at terminals to attach to pins.)
Now get two pins and pin them at a certain distance apart.
take the first spring and attach its two terminals to the pins.
Repeat the above procedure, but double (increase the distance x2) the distance between two pins.
Now you have to measure how many coils are there within 5cm of the two springs.
you'll observe that the second spring has half the coils of the first spring within 5cm.
In here no. of coils is the frequency
5cm length is time.
distance between coil is the wavelength.