1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
spayn [35]
3 years ago
10

emily collected $950 selling girl scout cookies all day saturday. Emily's troop collected 10 times as much as she did. How much

money did emilys troop raise
Mathematics
2 answers:
Serga [27]3 years ago
7 0
9500, you just add a zero to the end
Sveta_85 [38]3 years ago
7 0
9500 it the answer of the problem
You might be interested in
5.035 rounded to the nearest hundredth
klemol [59]

Answer:

5.04

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
Please answer correctly !!!!!!!!!!!!!!!!!!!! Will mark brainliest !!!!!!!!!!!!!!!!!
masha68 [24]

Answer:

The answer is 114 degrees.

Step-by-step explanation:

Since the angles are opposite from each other, it will be the same degrees.

6 0
3 years ago
Determine the value of X
Ulleksa [173]

Answer:

We need some form of question other then Determine the value of X.... or equation

5 0
3 years ago
If -y-2x^3=Y^2 then find D^2y/dx^2 at the point (-1,-2) in simplest form
algol13

Answer:

\frac{d^2y}{dx^2} = \frac{-4}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-y - 2x³ = y²

Rate of change of tangent line at point (-1, -2)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Basic Power Rule]:                                                  -y'-6x^2=2yy'
  2. [Algebra] Isolate <em>y'</em> terms:                                                                              -6x^2=2yy'+y'
  3. [Algebra] Factor <em>y'</em>:                                                                                       -6x^2=y'(2y+1)
  4. [Algebra] Isolate <em>y'</em>:                                                                                         \frac{-6x^2}{(2y+1)}=y'
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-6x^2}{(2y+1)}

<u>Step 3: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{-12x(2y+1)+6x^2(2y')}{(2y+1)^2}
  2. [Derivative] Simplify:                                                                                       y'' = \frac{-24xy-12x+12x^2y'}{(2y+1)^2}
  3. [Derivative] Back-Substitute <em>y'</em>:                                                                     y'' = \frac{-24xy-12x+12x^2(\frac{-6x^2}{2y+1} )}{(2y+1)^2}
  4. [Derivative] Simplify:                                                                                      y'' = \frac{-24xy-12x-\frac{72x^4}{2y+1} }{(2y+1)^2}

<u>Step 4: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em> and <em>y</em>:                                                                     y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(-1)^4}{2(-2)+1} }{(2(-2)+1)^2}
  2. [Pre-Algebra] Exponents:                                                                                      y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(1)}{2(-2)+1} }{(2(-2)+1)^2}
  3. [Pre-Algebra] Multiply:                                                                                   y''(-1,-2) = \frac{-48+12-\frac{72}{-4+1} }{(-4+1)^2}
  4. [Pre-Algebra] Add:                                                                                         y''(-1,-2) = \frac{-36-\frac{72}{-3} }{(-3)^2}
  5. [Pre-Algebra] Exponents:                                                                               y''(-1,-2) = \frac{-36-\frac{72}{-3} }{9}
  6. [Pre-Algebra] Divide:                                                                                      y''(-1,-2) = \frac{-36+24 }{9}
  7. [Pre-Algebra] Add:                                                                                          y''(-1,-2) = \frac{-12}{9}
  8. [Pre-Algebra] Simplify:                                                                                    y''(-1,-2) = \frac{-4}{3}
6 0
2 years ago
A contractor digs a hole for the basements of a new house that is 40 feet long and 10 1/2 feet deep. What is the width of the ho
34kurt
D. 15.5

40*10.5 = 420

6510/420 = 15.5
7 0
3 years ago
Other questions:
  • Indica si cada afirmación es verdadero (v) o falso (f) .
    6·1 answer
  • The ratio of red candies to blue candies is 5:4 in the bag. If there are 20 blue candies in the bag, how many red candies are th
    13·1 answer
  • Is (10, -12) a solution to the equation 3x + 2y =6?<br>Yes<br>No​
    11·1 answer
  • Where does the 1 come from in this problem? The one that is under 1-r. We needed to solve for a? I'm just not sure why they put
    12·1 answer
  • Gcf of 30x2,6x6,18x2
    14·1 answer
  • Would (1,1), (2,3), (3,6), (4,10) be a linear relationship
    12·1 answer
  • 6 less than a number is greater than 4
    5·2 answers
  • Factorize 25 – x² =<br>m2​
    8·1 answer
  • Consider the differential equation dy/dx= e^x-1/2y. If y = 4 when x = 0 what is a value of y when x = 1?
    12·1 answer
  • Ayden is making smoothies. Each smoothie needs 1/4 cups of yogurt. He has 2 1/2 cups of yogurt. How many smoothies can he make?
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!