Answer:the value drops 100$ every 3 years
Step-by-step explanation:
moves down 100 every three years
We can write the function in terms of y rather than h(x)
so that:
y = 3 (5)^x
A. The rate of change is simply calculated as:
r = (y2 – y1) / (x2 – x1) where r stands for rate
Section A:
rA = [3 (5)^1 – 3 (5)^0] / (1 – 0)
rA = 12
Section B:
rB = [3 (5)^3 – 3 (5)^2] / (3 – 2)
rB = 300
B. We take the ratio of rB / rA:
rB/rA = 300 / 12
rB/rA = 25
So we see that the rate of change of section B is 25
times greater than A
Answer :
Two Hours
Step By Step :
20-4=16
16/8=2
Surface area of box=1200 cm²
<span>Volume of box=s²h </span>
<span>s = side of square base </span>
<span>h = height of box </span>
<span>S.A. = s² + 4sh </span>
<span>S.A. = surface area or 1200 cm², s²
= the square base, and 4sh = the four 'walls' of the box. </span>
<span>1200 = s² + 4sh </span>
<span>1200 - s² = 4sh </span>
<span>(1200 - s²)/(4s) = h </span>
<span>v(s) = s²((1200 - s²)/(4s)) </span>
<span>v(s) = s(1200 - s²)/4 . </span>
<span>v(s) = 300s - (1/4)s^3</span>
by derivating
<span>v'(s) = 300 - (3/4)s² </span>
<span>0 = 300 - (3/4)s² </span>
<span>-300 = (-3/4)s² </span>
<span>400 = s² </span>
<span>s = -20 and 20. </span>
again derivating
<span>v"(s) = -(3/2)s </span>
<span>v"(-20) = -(3/2)(-20) </span>
<span>v"(-20) = 30 </span>
<span>v"(20) = -(3/2)(20) </span>
<span>v"(20) = -30 </span>
<span>v(s) = 300s - (1/4)s^3 </span>
<span>v(s) = 300(20) - (1/4)(20)^3 </span>
<span>v(s) = 6000 - (1/4)(8000) </span>
<span>v = 6000 - 2000
v=4000</span>