On the phase diagram, conditions of pressure and temperature, at which two phases coexist in equilibrium are separated by a line.
They have the same mass as the mass of the reactants. evidence to back this up is the law of conservation of mass
The shoreline is one of the harshest and most changeable environments for living creatures. The changing tides shift the environment dramatically within a sub-daily cycle. Here, we can consider two typical shoreline organisms, and the changing environment they must endure. Within the rocky shore environment, an octopus would be within the shallow but open sea environment during high tide, and water temperature and salinity conditions would be fairly constant. During low tide, the octopus might become trapped in a rock pool. This environment is dramatically different. The water temperature and salinity might increase drastically with exposure to solar radiation. The octopus is also more vulnerable to predation by humans and other land animals. Within the sandy shore environment, sand clams would be actively positioned at the interface of the sand and water, and will be actively filtering sea water for detritus. During low tide, the sand would be exposed to the air, and the clams would burrow down into the sand so as to avoid dessication.
This is why natural selection acts on phenotypes instead of genotypes. A phenotype is an organism's physical traits, while a genotype is an organism's genetic makeup. This may sound counter-intuitive since the genetic makeup does get<span> passed on from generation to generation through reproduction.</span>
Answer:
D
Explanation:
Zebra mussels can be a nuisance in novel ecosystems. When introduced in a non-native ecosystem with no natural predators, they reproduce rapidly displacing native mussels. Zebra mussels take up much of the algar that feeds the other native species hence starving them to death and causing their numbers to plummet. In addition, they attach to the other mussels and clog up power plants, that use the local water, water intakes.