Answer:
Step-by-step explanation:
Important: Please use " ^ " to indicate exponentiation: 5(3x - 4)^2 is correct.
This is "five times the square of the difference between 3x and 4."
![\bf f(x)=y=2x+sin(x) \\\\\\ inverse\implies x=2y+sin(y)\leftarrow f^{-1}(x)\leftarrow g(x) \\\\\\ \textit{now, the "y" in the inverse, is really just g(x)} \\\\\\ \textit{so, we can write it as }x=2g(x)+sin[g(x)]\\\\ -----------------------------\\\\](https://tex.z-dn.net/?f=%5Cbf%20f%28x%29%3Dy%3D2x%2Bsin%28x%29%0A%5C%5C%5C%5C%5C%5C%0Ainverse%5Cimplies%20x%3D2y%2Bsin%28y%29%5Cleftarrow%20f%5E%7B-1%7D%28x%29%5Cleftarrow%20g%28x%29%0A%5C%5C%5C%5C%5C%5C%0A%5Ctextit%7Bnow%2C%20the%20%22y%22%20in%20the%20inverse%2C%20is%20really%20just%20g%28x%29%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Ctextit%7Bso%2C%20we%20can%20write%20it%20as%20%7Dx%3D2g%28x%29%2Bsin%5Bg%28x%29%5D%5C%5C%5C%5C%0A-----------------------------%5C%5C%5C%5C)
![\bf \textit{let's use implicit differentiation}\\\\ 1=2\cfrac{dg(x)}{dx}+cos[g(x)]\cdot \cfrac{dg(x)}{dx}\impliedby \textit{common factor} \\\\\\ 1=\cfrac{dg(x)}{dx}[2+cos[g(x)]]\implies \cfrac{1}{[2+cos[g(x)]]}=\cfrac{dg(x)}{dx}=g'(x)\\\\ -----------------------------\\\\ g'(2)=\cfrac{1}{2+cos[g(2)]}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Blet%27s%20use%20implicit%20differentiation%7D%5C%5C%5C%5C%0A1%3D2%5Ccfrac%7Bdg%28x%29%7D%7Bdx%7D%2Bcos%5Bg%28x%29%5D%5Ccdot%20%5Ccfrac%7Bdg%28x%29%7D%7Bdx%7D%5Cimpliedby%20%5Ctextit%7Bcommon%20factor%7D%0A%5C%5C%5C%5C%5C%5C%0A1%3D%5Ccfrac%7Bdg%28x%29%7D%7Bdx%7D%5B2%2Bcos%5Bg%28x%29%5D%5D%5Cimplies%20%5Ccfrac%7B1%7D%7B%5B2%2Bcos%5Bg%28x%29%5D%5D%7D%3D%5Ccfrac%7Bdg%28x%29%7D%7Bdx%7D%3Dg%27%28x%29%5C%5C%5C%5C%0A-----------------------------%5C%5C%5C%5C%0Ag%27%282%29%3D%5Ccfrac%7B1%7D%7B2%2Bcos%5Bg%282%29%5D%7D)
now, if we just knew what g(2) is, we'd be golden, however, we dunno
BUT, recall, g(x) is the inverse of f(x), meaning, all domain for f(x) is really the range of g(x) and, the range for f(x), is the domain for g(x)
for inverse expressions, the domain and range is the same as the original, just switched over
so, g(2) = some range value
that means if we use that value in f(x), f( some range value) = 2
so... in short, instead of getting the range from g(2), let's get the domain of f(x) IF the range is 2
thus 2 = 2x+sin(x)
![\bf 2=2x+sin(x)\implies 0=2x+sin(x)-2 \\\\\\ -----------------------------\\\\ g'(2)=\cfrac{1}{2+cos[g(2)]}\implies g'(2)=\cfrac{1}{2+cos[2x+sin(x)-2]}](https://tex.z-dn.net/?f=%5Cbf%202%3D2x%2Bsin%28x%29%5Cimplies%200%3D2x%2Bsin%28x%29-2%0A%5C%5C%5C%5C%5C%5C%0A-----------------------------%5C%5C%5C%5C%0Ag%27%282%29%3D%5Ccfrac%7B1%7D%7B2%2Bcos%5Bg%282%29%5D%7D%5Cimplies%20g%27%282%29%3D%5Ccfrac%7B1%7D%7B2%2Bcos%5B2x%2Bsin%28x%29-2%5D%7D)
hmmm I was looking for some constant value... but hmm, not sure there is one, so I think that'd be it
GCF means the term(s) that 6x and x have.
The GCF is x because:
1. Using multiplication: 6x * x = 6x^2
becomes x(6+x) = 6x^2
GCF is x.
Good luck to you!