There isn't enough info to determine that, I believe. You would need an equation that would allow me to determine the minimum output for an A.
since the diameter of the base of the cylinder is 6 feet, then its radius is half that, or 3 feet.
![\bf \textit{volume of a cylinder}\\\\ V=\pi r^2 h~~ \begin{cases} r=radius\\ h=height\\[-0.5em] \hrulefill\\ r=3\\ h=9 \end{cases}\implies V=\pi (3)^2(9)\implies V=81\pi](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bvolume%20of%20a%20cylinder%7D%5C%5C%5C%5C%0AV%3D%5Cpi%20r%5E2%20h~~%0A%5Cbegin%7Bcases%7D%0Ar%3Dradius%5C%5C%0Ah%3Dheight%5C%5C%5B-0.5em%5D%0A%5Chrulefill%5C%5C%0Ar%3D3%5C%5C%0Ah%3D9%0A%5Cend%7Bcases%7D%5Cimplies%20V%3D%5Cpi%20%283%29%5E2%289%29%5Cimplies%20V%3D81%5Cpi)
Answer: Vertex = (2, -15) 2nd point = (0, -3)
<u>Step-by-step explanation:</u>
g(x) = 3x² - 12x - 3
= 3(x² - 4x - 1)
a=1 b=-4 c=-1
Find the x-value of the vertex by using the formula for the axis of symmetry: 


= 2
Find the y-value of the vertex by plugging the x-value (above) into the given equation: g(x) = 3x² - 12x - 3
g(2) = 3(2)² - 12(2) - 3
= 12 - 24 - 3
= -15
So, the vertex is (2, -15) ← PLOT THIS COORDINATE
Now, choose a different x-value. Plug it into the equation and solve for y. <em>I chose x = 0</em>
g(0) = 3(0)² - 12(0) - 3
= 0 - 0 - 3
= -3
So, an additional point is (0, -3) ← PLOT THIS COORDINATE
Answer:
C
Step-by-step explanation:
First of all their is an easier way solving this 2l/ + l^2
but how you need it is c because the base is 100 and each face is 40 how 10x8=80 80/2=40
Yeah post the questions I'll see if I can answer them