Atom <span>Appears in these related concepts: Early Ideas about Atoms, Stable Isotopes, and Atomic Theory of Matter</span>balanced equation <span>Appears in these related concepts: Effect of a Common Ion on Solubility, Reaction Stoichiometry, and Mole-to-Mole Conversions</span>bond <span>Appears in these related concepts: Factors Affecting the Price of a Bond, Current Maturities of Long-Term Debt, and Preferred Stock</span>chemical reaction <span>Appears in these related concepts: Periodic Table Position and Electron Configuration, Free Energy Changes for Nonstandard States, and Physical and Chemical Changes to Matter</span>chemistry <span>Appears in these related concepts: Description of the Hydrogen Atom, Mass-to-Mole Conversions, and General Trends in Chemical Properties</span>element <span>Appears in these related concepts: Development of the Periodic Table, Elements and Compounds, and The Periodic Table</span>energy <span>Appears in these related concepts: Surface Tension, Energy Transportation, and Introduction to Work and Energy</span>gas <span>Appears in these related concepts: Oxidation Numbers of Metals in Coordination Compounds, Irreversible Addition Reactions, and Microstates and Entropy</span>isolated system <span>Appears in these related concepts: Conservation of Mechanical Energy, Internal Energy, and Comparison of Enthalpy to Internal Energy</span>liquid <span>Appears in these related concepts: Overview of Atomic Structure, Types of Synthetic Organic Polymers, and Three States of Matter</span>matter <span>Appears in these related concepts: Physical and Chemical Properties of Matter, Introduction: Physics and Matter, and The Study of Chemistry</span>mole <span>Appears in these related concepts: Avogadro's Number and the Mole, Molar Mass of Compounds, and Concept of Osmolality and Milliequivalent</span>solid <span>Appears in these related concepts: Extractive Metallurgy, Metagenomics, and Some Polycyclic Heterocycles</span>system <span>Appears in these related concepts: Definition of Management, <span>Local, regional, national, international, and global marketers </span>, and Additional cost and energy saving suggestions for pumps</span>
<span />
Answer 19.9g. I’ve took the test last week at my uncle randy’s house
Answer:
0.007 mol
Explanation:
We can solve this problem using the ideal gas law:
PV = nRT
where P is the total pressure, V is the volume, R the gas constant, T is the temperature and n is the number of moles we are seeking.
Keep in mind that when we collect a gas over water we have to correct for the vapor pressure of water at the temperature in the experiment.
Ptotal = PH₂O + PO₂ ⇒ PO₂ = Ptotal - PH₂O
Since R constant has unit of Latm/Kmol we have to convert to the proper unit the volume and temperature.
P H₂O = 23.8 mmHg x 1 atm/760 mmHg = 0.031 atm
V = 1750 mL x 1 L/ 1000 mL = 0.175 L
T = (25 + 273) K = 298 K
PO₂ = 1 atm - 0.031 atm = 0.969 atm
n = PV/RT = 0.969 atm x 0.1750 L / (0.08205 Latm/Kmol x 298 K)
n = 0.007 mol
<span>Electrons in a nitrogen-phosphorus covalent bond are not shared equally because nitrogen and phosphorus do not have the same electronegativity. The atoms spend more time around the most electronegative atom nitrogen.</span>
Answer:
(c) The retention time would be higher (d) The retention time would be lower.
Explanation:
For the polar solutes which were separated using the hydrophilic interaction chromatography (HILIC) with a strongly polar bonded phase, the retention time would be higher if eluent were changed from 80 vol% to 90 vol% acetonitrile in water.
However, for the polar solutes which were separated using the normal-phase chromatography on bare silica with methyl t=butyl ether and 2-propanol solvent, the retention time would be lower if the eluent were changed from 40 vol% to 60 vol% 2-propanol.