1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sertanlavr [38]
3 years ago
13

PlZ HELP WILL MARK YOU AS THE BRAINLIEST!

Mathematics
1 answer:
defon3 years ago
5 0

Answer:

1. distance = sqrt( (7-7)^2+(2- -8)^2) = 10

2.  check out desk (0,0 ) => distance = sqrt( (0- -9)^2+(0-0)^2) = 9

3. last corner ( -3, 4)

4. area = sqrt( (-10- -10)^2+(10-4)^2) x sqrt( (-3- -10)^2+(10-10)^2) = 6x7 =42

5. check desk (0,0), south direction = negative y axis => P_beginning (0,-20), P_end (0,-(20+25)) = (0,-45)

6. A(-2,-1) and B(4,-1) lie in y =-1. AB = sqrt( (-2- 4)^2+(-1- -1)^2) =6

=> area = 3.6x6 =21.6

=> peri = 2x(3.6+6) = 19.2

7. A(-5,4) and B(2,4), AB =  sqrt( (-5- 2)^2+(4- -4)^2) = 7 => AB is base

=> p = peri = 7+ 8.3x2 = 23.6

=> area = sqrt[px(p-7)x(p-8.3)x(p-8.3)]

             =sqrt[23.6x(23.6-7)x(23.6-8.3)x(23.6-8.3)] = 302.8

You might be interested in
Lim n→∞[(n + n² + n³ + .... nⁿ)/(1ⁿ + 2ⁿ + 3ⁿ +....nⁿ)]​
Schach [20]

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

To, evaluate this limit, let we simplify numerator and denominator individually.

So, Consider Numerator

\rm :\longmapsto\:n +  {n}^{2} +  {n}^{3}  +  -  -  -  +  {n}^{n}

Clearly, if forms a Geometric progression with first term n and common ratio n respectively.

So, using Sum of n terms of GP, we get

\rm \:  =  \: \dfrac{n( {n}^{n}  - 1)}{n - 1}

\rm \:  =  \: \dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }

Now, Consider Denominator, we have

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {n}^{n}

can be rewritten as

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {(n - 1)}^{n} +   {n}^{n}

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[{\dfrac{n - 1}{n}\bigg]}^{n} + \bigg[{\dfrac{n - 2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

Now, Consider

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

So, on substituting the values evaluated above, we get

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}  - 1}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{1}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

Now, we know that,

\red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to \infty} \bigg[1 + \dfrac{k}{x} \bigg]^{x}  =  {e}^{k}}}}

So, using this, we get

\rm \:  =  \: \dfrac{1}{1 +  {e}^{ - 1}  + {e}^{ - 2} +  -  -  -  -  \infty }

Now, in denominator, its an infinite GP series with common ratio 1/e ( < 1 ) and first term 1, so using sum to infinite GP series, we have

\rm \:  =  \: \dfrac{1}{\dfrac{1}{1 - \dfrac{1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{1}{ \dfrac{e - 1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{e}{e - 1} }

\rm \:  =  \: \dfrac{e - 1}{e}

\rm \:  =  \: 1 - \dfrac{1}{e}

Hence,

\boxed{\tt{ \displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} } =  \frac{e - 1}{e} = 1 -  \frac{1}{e}}}

3 0
2 years ago
Emily buys a toaster for 10%off if she pays 36 then what was the original price
PtichkaEL [24]
x-0.1x=36

where x is the original price
0.1x is the discount (10% of the original price)
36 is the price paid

x-0.1x=36
0.9x=36
-----   ----
0.9     0.9
x=40

The original price is $40.00

7 0
3 years ago
Read 2 more answers
Find the distance between <br><br> (4,3) and (0,3).<br> A) 10 <br> B) 2 <br> C) 2<br> 13<br> D) 4
Daniel [21]

Answer:

D

Step-by-step explanation:

4 units

4 0
3 years ago
What is the greatest common factor of 3, 53, 73 and 74?
Annette [7]
I think it's 74 because 3 has the factor :1,3 
53 has the factor: 53,1
73 has the factor:1 ,73
74 has the factor:1,74,2,37
4 0
2 years ago
Simplify this expression: -2(-4x + 2y - 6)
Monica [59]

Answer:

8x - 4y + 12

Step-by-step explanation:

-2(-4x + 2y - 6)

(-2)(-4x) + (-2)(2y) + (-2)(-6)

(2 * 4x) - (2 * 2y) + (2 * 6)

8x - 4y + 12

4 0
2 years ago
Other questions:
  • If the coordinates of a triangle are (-2,-2) (-1,1) (1,-1) what would be the coordinates if I rotated the triangle 180 degrees c
    10·1 answer
  • Choose the solution(s) of the following system of equations x2 + y2 = 6 x2 – y = 6
    7·2 answers
  • 75 percent decrease followed by a 50 percent increase
    12·1 answer
  • What is the cube root of 0.008? A) 2 B) 0.2 C) 0.02 D) 0.002
    15·1 answer
  • In a data set with a minimum value of 54.5 and a maximum value of 98.6 with 300 observations, there are 186 points less than 81.
    8·1 answer
  • A right angle is complementary.<br> true or false
    9·1 answer
  • What number does y stand for in this equation?<br> 2y - 7 = 35
    15·2 answers
  • What is the common difference of the following arithmetic sequence?
    11·1 answer
  • 5.<br> Solve<br> 3/5x + 1/3 &lt;4/5x+-1/3
    11·2 answers
  • 3, 12, 48, 192<br> 9th term:<br> 11th term:<br> What is the 11th term plz help
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!