1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yaroslaw [1]
3 years ago
8

$750 are deposited into an account quarterly for six years at an interest rate of 5.3% compound quarterly. how much is in the ac

count at the end of the 6 years?
Mathematics
1 answer:
elena-14-01-66 [18.8K]3 years ago
4 0
A = P (1 + r/n)^nt

P = principal amount
r = rate in decimals
n = number of tim s interest is compounded/year
t = # of years amount is deposited or borrowed for

A = 750 (1 + .053/4)^4(6)

A = $1028.63
You might be interested in
Harvard University accepts 6 students for every 100 applicants. How many students will be accepted if 850 applicants apply for a
patriot [66]

Answer:

51 accepted

Step-by-step explanation:

Well, if 6 are accepted out of 100, that's 6% or 0.06. To find how many are accepted out of 850, multiply 850 by 0.06.

4 0
3 years ago
Read 2 more answers
Ahmose drank 35% of a 400mL container of orange juice. Tutankhamun drank 45% of a 350mL container of orange juice. Who drank mor
OlgaM077 [116]

Answer:

Tutankhamun

Step-by-step explanation:

7 0
3 years ago
Dil, Coleman
serg [7]

Answer: likely

Step-by-step explanation: Since they pulled out many red dresses, there is a better chance of pulluing out a red dress

5 0
2 years ago
Solve equation. <br><br> X^2-4x-12 = 0
ser-zykov [4K]

Answer:

Step-by-step explanation:

x2 - 4x - 12 = 0

x2 - 6x + 2x - 12= 0

x(x - 6) + 2(x - 6) = 0

x + 2 = 0

x = - 2

x - 6 = 0

x = 6

5 0
3 years ago
99 POINT QUESTION, PLUS BRAINLIEST!!!
VladimirAG [237]
First, we have to convert our function (of x) into a function of y (we revolve the curve around the y-axis). So:


y=100-x^2\\\\x^2=100-y\qquad\bold{(1)}\\\\\boxed{x=\sqrt{100-y}}\qquad\bold{(2)} \\\\\\0\leq x\leq10\\\\y=100-0^2=100\qquad\wedge\qquad y=100-10^2=100-100=0\\\\\boxed{0\leq y\leq100}

And the derivative of x:

x'=\left(\sqrt{100-y}\right)'=\Big((100-y)^\frac{1}{2}\Big)'=\dfrac{1}{2}(100-y)^{-\frac{1}{2}}\cdot(100-y)'=\\\\\\=\dfrac{1}{2\sqrt{100-y}}\cdot(-1)=\boxed{-\dfrac{1}{2\sqrt{100-y}}}\qquad\bold{(3)}

Now, we can calculate the area of the surface:

A=2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\left(-\dfrac{1}{2\sqrt{100-y}}\right)^2}\,\,dy=\\\\\\= 2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=(\star)

We could calculate this integral (not very hard, but long), or use (1), (2) and (3) to get:

(\star)=2\pi\int\limits_0^{100}1\cdot\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\left|\begin{array}{c}1=\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\end{array}\right|= \\\\\\= 2\pi\int\limits_0^{100}\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\\\\\\ 2\pi\int\limits_0^{100}-2\sqrt{100-y}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\dfrac{dy}{-2\sqrt{100-y}}=\\\\\\

=2\pi\int\limits_0^{100}-2\big(100-y\big)\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\left(-\dfrac{1}{2\sqrt{100-y}}\, dy\right)\stackrel{\bold{(1)}\bold{(2)}\bold{(3)}}{=}\\\\\\= \left|\begin{array}{c}x=\sqrt{100-y}\\\\x^2=100-y\\\\dx=-\dfrac{1}{2\sqrt{100-y}}\, \,dy\\\\a=0\implies a'=\sqrt{100-0}=10\\\\b=100\implies b'=\sqrt{100-100}=0\end{array}\right|=\\\\\\= 2\pi\int\limits_{10}^0-2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=(\text{swap limits})=\\\\\\

=2\pi\int\limits_0^{10}2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4}\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^4}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^2}{4}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{\dfrac{x^2}{4}\left(4x^2+1\right)}\,\,dx= 4\pi\int\limits_0^{10}\dfrac{x}{2}\sqrt{4x^2+1}\,\,dx=\\\\\\=\boxed{2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx}

Calculate indefinite integral:

\int x\sqrt{4x^2+1}\,dx=\int\sqrt{4x^2+1}\cdot x\,dx=\left|\begin{array}{c}t=4x^2+1\\\\dt=8x\,dx\\\\\dfrac{dt}{8}=x\,dx\end{array}\right|=\int\sqrt{t}\cdot\dfrac{dt}{8}=\\\\\\=\dfrac{1}{8}\int t^\frac{1}{2}\,dt=\dfrac{1}{8}\cdot\dfrac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}=\dfrac{1}{8}\cdot\dfrac{t^\frac{3}{2}}{\frac{3}{2}}=\dfrac{2}{8\cdot3}\cdot t^\frac{3}{2}=\boxed{\dfrac{1}{12}\left(4x^2+1\right)^\frac{3}{2}}

And the area:

A=2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx=2\pi\cdot\dfrac{1}{12}\bigg[\left(4x^2+1\right)^\frac{3}{2}\bigg]_0^{10}=\\\\\\= \dfrac{\pi}{6}\left[\big(4\cdot10^2+1\big)^\frac{3}{2}-\big(4\cdot0^2+1\big)^\frac{3}{2}\right]=\dfrac{\pi}{6}\Big(\big401^\frac{3}{2}-1^\frac{3}{2}\Big)=\boxed{\dfrac{401^\frac{3}{2}-1}{6}\pi}

Answer D.
6 0
3 years ago
Read 2 more answers
Other questions:
  • I NEED to know the answer and steps to figure out, Mark wants to paint a mural. He has 1 1/3 gallons of yellow paint, 1 1/4 gall
    12·1 answer
  • #16 plz and the answer and<br> Work plz!!!
    5·1 answer
  • A building makes a 90° angle with the ground. A ladder leans against the building, making a 110° exterior angle with the ground.
    5·1 answer
  • Simplify, so that there is only one equation which equals 0.
    15·1 answer
  • Multiply and simplify.
    5·1 answer
  • In a random sample of 200 Americans, 51% said they favor building more nuclear power plants. In a random sample of 150 French, 4
    14·1 answer
  • An experiment consists of tossing a coin and drawing a card, with the card-drawing stage dependent on the result of the coin tos
    15·2 answers
  • In parallelogram HJKL if m∡HJK=110∘ find m∡JKL.
    5·1 answer
  • What is the slope of the line that passes through the points (3, -2) and (9, -2)?
    12·1 answer
  • PLEASE ANSWER FAST. Bill needs $37,000 every year and earns $27.90 per hour.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!