After 6 years the investment is $5555.88
Step-by-step explanation:
A principal of $3600 is invested at 7.5% interest, compounded annually. How much will the investment be worth after 6 years?
The formula used to find future value is:
where A(t) = Accumulated amount
P = Principal Amount
r = annual rate
t= time
n= compounding periods per year
We are given:
P = $3600
r = 7.5 %
t = 6
n = 1
Putting values in formula:
So, After 6 years the investment is $5555.88
Keywords: Compound Interest formula
Learn more about Compound Interest formula at:
#learnwithBrainly
The unit form for that is
5,500
The solution of the linear equations will be ( -2, 4).
<h3>What is an equation?</h3>
It is defined as the relation between two variables, if we plot the graph of the linear equation we will get a straight line.
Given equations are:-
Solving the equations by elimination method:-
2x +3y = 8
3x+y= -2
Multiply the second equation by 3 and subtract from the first equation.
2x +3y = 8
-9x -3y = 6
----------------
-7x = 14
x = -2
Out of the value of x in any one equation, we will get the value of y.
3x+y= -2
3 ( -2) + y = -2
-6 + y = -2
y = 4
The graph of the equations is also attached with the answer below.
Therefore the solution of the linear equations will be ( -2, 4).
The complete question is given below:-
Exploring Systems of Linear Equations 2x +3y =8 and 3x+y= -2. Find the value of x and y and draw a graph for the system of linear equations.
To know more about equations follow
brainly.com/question/2972832
#SPJ1
It would be a trapezoid because parallelograms have the top and bottom usually the same number.