Answer:
no
Explanation; violation of brainly law
Answer:
<u> The following four traits are -: </u>
- <u>Pedigree 1 -</u> A recessive trait (autosomal recessive) is expressed by pedigree 1.
- <u>Pedigree 2- Recessive inheritance is defined by Pedigree 2. </u>
- <u>Pedigree 3</u> - The inheritance of the dominant trait (autosomal dominant) is illustrated by Pedigree 3.
- <u>Pedigree 4-</u> An X-like dominant trait is expressed by Pedigree 4.
Explanation:
<u>Explaination of each pedigree chart</u>-
- Pedigree 1 demonstrates the <u>recessive trait </u>since their children have been affected by two unaffected individuals. If the characteristics were X-linked, in order to have an affected daughter, I-1 would have to be affected.
In this, both parents are autosomal recessive trait carriers, so the child will be affected by a 1/4 (aa) - <u> Recessive inheritance</u> is defined by <u>Pedigree 2</u>. This is<u> X-related inheritance as autosomal recessive</u> inheritance has already been accounted for in part 1. This inference is confirmed by evidence showing that the father (I-1) is unaffected and that only the sons exhibit the characteristic in generation II, suggesting that the mother must be the carrier. The individual I-2 is a carrier for this X-linked trait. A typical Xa chromosome is attached to the unaffected father (I-1), so the chance of carrier II-5 is 1/2. Probability of an affected son = 1/2 (probability II-5 is a carrier) x 1/2 (probability II -5 contributes (
) x 1/2 (probability of Y from father II-6) = 1/8. An affected daughter's likelihood is 0 because a typical
must be contributed by II-6. - The inheritance of the<u> dominant trait</u> is demonstrated by <u>Pedigree 3 </u>because affected children still have affected parents (remember that all four diseases are rare). The trait must be <u>autosomal dominant</u> because it is passed down to the son by the affected father. There is a 1/2 risk that the heterozygous mother (II-5) would pass on mutant alleles to a child of either sex for an autosomal dominant feature.
- <u>Pedigree 4</u> is an <u>X-linked dominant function</u> characterized by the transmission to all of his daughters from the affected father but none of his son. On the mutant X chromosome, the father (I-1) passes on to all his daughters and none of his sons. As seen by his normal phenotype, II-6 therefore does not bear the mutation. An affected child's likelihood is 0.
In the question the pedigree chart was missing ,hence it is given below.
Answer:
All organisms require sulfur as a macro-nutrient. (Ans. E)
Explanation:
Sulfur is necessary for all living things. It is taken up in the form of sulfate from the soil and sea water by the plants, and algae.
Sulfur is known as the essential nutrient for plant growth. Sulfur playing various important role in plants. About 90% of the sulfur is absorbed by the plants for the purpose of amino acids synthesis, known as the building blocks of proteins. Sulfur is important for the enzyme which is helping in the formation of the chlorophyll molecule. Sulfur is essential for the synthesis of oil crops.
In human body sulfur playing some essential role such as amino acid production which is converting into proteins and producing enzymes. Sulfur is important for insulin production, insulin allow the cells to use glucose as energy. Sulfur is found in most important antioxidant known as glutathione, which helping in the inhibition of oxidation of the other molecules and preventing from cell damage. Collagen provide skin strength and structure, sulfur is important for collagen synthesis as well.
Solar radiation, because it hasn't (at least noticeably) affected hawks.
Phenotype - short , Tall
Genotype - tt (short) , TT or Tt (tall)
<u>Explanation:</u>
In Mendelian Genetics, <em>Dominant traits</em> are represented by capital letters and <em>Recessive traits</em> are represented by small letters.
So if height is the character considered, then the traits would be short and tall.
Tall is the dominant phenotype and short is the recessive phenotype.
The alleles of the gene for height are T and t.
The genotype for Tall trait is TT or Tt.
The genotype for short trait is tt.
Therefore, the symbol representation of phenotype (Tall) is TT or Tt and for phenotype (short) is tt.