Answer:
Magnetic marbles will tend to attract each other.
Explanation:
Magnetic marbles are composed of ferromagnetic materials, which indicates that they function as a magnet and have the ability to attract other objects formed by ferromagnetic materials. In this case, we can say that the magnetic marbles attract each other and inside a jar containing magnetic marbles and common balls, the magnetic marbles will tend to attract and group together.
 
        
             
        
        
        
Answer:
Energy decreases as it moves up trophic levels because energy is lost as metabolic heat when the organisms from one trophic level are consumed by organisms from the next level.
Explanation:
Energy is passed between organisms through the food chain. Food chains start with producers. They are eaten by primary consumers which are in turn eaten by secondary consumers. They are then eaten by tertiary consumers and in a long food day these can be eaten by quaternary consumers
HOPE IT HELPS ^w^
 
        
                    
             
        
        
        
The hypothetical cell will approximately contain 94 percent (94%) of water.
- If a cell is placed in a hypertonic solution that contains more concentration of solutes (such as salt and glucose) than the cell, then it will shrink because water moves outside the cell.
- If a cell is placed in a hypotonic solution that contains more concentration of water than the cell, then the water will move inside the cell. 
- Finally, if a cell is placed in an isotonic solution, which contains the same concentration of solute and solvent as outside the cell, there will be no change in the cell and the solution.
- In this case, the percentage of solutes is equal to 5% (glucose) + 1% (salt) = 6%, so the remmaining porcentage of water is equal to 94 percent (94%).
Learn more in:
brainly.com/question/3568318?referrer=searchResults
 
        
             
        
        
        
Answer:
Climate change is rapidly becoming known as a tangible issue that must be addressed to avoid major environmental consequences in the future. Recent change in public opinion has been caused by the physical signs of climate change–melting glaciers, rising sea levels, more severe storm and drought events, and hotter average global temperatures annually. Transportation is a major contributor of carbon dioxide (CO2) and other greenhouse gas emissions from human activity, accounting for approximately 14 percent of total anthropogenic emissions globally and about 27 percent in the U.S.
Fortunately, transportation technologies and strategies are emerging that can help to meet the climate challenge. These include automotive and fuel technologies, intelligent transportation systems (ITS), and mobility management strategies that can reduce the demand for private vehicles. While the climate change benefits of innovative engine and vehicle technologies are relatively well understood, there are fewer studies available on the energy and emission impacts of ITS and mobility management strategies. In the future, ITS and mobility management will likely play a greater role in reducing fuel consumption. Studies are often based on simulation models, scenario analysis, and limited deployment experience. Thus, more research is needed to quantify potential impacts. Of the nine ITS technologies examined, traffic signal control, electronic toll collection, bus rapid transit, and traveler information have been deployed more widely and demonstrated positive impacts (but often on a limited basis). Mobility management approaches that have established the greatest CO2 reduction potential, to date, include road pricing policies (congestion and cordon) and carsharing (short-term auto access). Other approaches have also indicated CO2 reduction potential including: low-speed modes, integrated regional smart cards, park-and-ride facilities, parking cash out, smart growth, telecommuting, and carpooling.
Explanation: