Answer:
The angle between the given vectors u and v is ![\theta=cos^{-1}\left[\frac{3}{\sqrt{10}}\right]](https://tex.z-dn.net/?f=%5Ctheta%3Dcos%5E%7B-1%7D%5Cleft%5B%5Cfrac%7B3%7D%7B%5Csqrt%7B10%7D%7D%5Cright%5D)
Step-by-step explanation:
Given vectors are
and 
Now compute the dot product of u and v:




Now find the magnitude of u and v:









To find the angle between the given vectors

![\theta=cos^{-1}\left[\frac{\overrightarrow{u}.\overrightarrow{v}}{|\overrightarrow{u}|\overrightarrow{v}|}\right]](https://tex.z-dn.net/?f=%5Ctheta%3Dcos%5E%7B-1%7D%5Cleft%5B%5Cfrac%7B%5Coverrightarrow%7Bu%7D.%5Coverrightarrow%7Bv%7D%7D%7B%7C%5Coverrightarrow%7Bu%7D%7C%5Coverrightarrow%7Bv%7D%7C%7D%5Cright%5D)
![=cos^{-1}\left[\frac{15}{5\times \sqrt{10}}\right]](https://tex.z-dn.net/?f=%3Dcos%5E%7B-1%7D%5Cleft%5B%5Cfrac%7B15%7D%7B5%5Ctimes%20%5Csqrt%7B10%7D%7D%5Cright%5D)
![=cos^{-1}\left[\frac{15}{5\times \sqrt{10}}\right]](https://tex.z-dn.net/?f=%3Dcos%5E%7B-1%7D%5Cleft%5B%5Cfrac%7B15%7D%7B5%5Ctimes%20%5Csqrt%7B10%7D%7D%5Cright%5D)
![\theta=cos^{-1}\left[\frac{3}{\sqrt{10}}\right]](https://tex.z-dn.net/?f=%5Ctheta%3Dcos%5E%7B-1%7D%5Cleft%5B%5Cfrac%7B3%7D%7B%5Csqrt%7B10%7D%7D%5Cright%5D)
Therefore the angle between the vectors u and v is
![\theta=cos^{-1}\left[\frac{3}{\sqrt{10}}\right]](https://tex.z-dn.net/?f=%5Ctheta%3Dcos%5E%7B-1%7D%5Cleft%5B%5Cfrac%7B3%7D%7B%5Csqrt%7B10%7D%7D%5Cright%5D)
Answer:
-14
Step-by-step explanation:
4 + x/7 =2
x/7= -2
x= -2 * 7
x=
-14
First, you would find a common denominator which is 12. You would then get 5/12 and 7/12 or 20/48 and 28/48. Using this you can see that their are 8 more girls than boys in the play. Hope you found this helpful!
Answer: 16 g
Step-by-step explanation:
We can solve this with the Radioactive Half Life Formula:
Where:
is the final amount of radioactive calcium
is the initial amount of radioactive calcium
is the time elapsed
is the half life of radioactive calcium
Solving with the given data:
This is the amount of radioactive calcium left
It is 8 the answer your welco