Electric current? Why is the thing math lol.
Very simple.
Let's say you have an equation.
f(x) = x^2
You are asked to find the value for y when x equals 1.
The new equation is: f(1) = (1)^2
f(1) = 1
When x = 1, y = 1.
The same concept is applied here.
In the graph, where does x equal 0?
It equals zero at the origin.
Is there any y-value associated with 0?
Yes, there is.
Y equals five when x equals 0.
So
h(0) = 5
Answer:

Step-by-step explanation:
<u>Operation of Functions</u>
Given:


The sum of (f+g) (x) is:

We cannot operate with the expression inside the absolute bars, thus:

Answer:β=√10 or 3.16 (rounded to 2 decimal places)
Step-by-step explanation:
To find the value of β :
- we will differentiate the y(x) equation twice to get a second order differential equation.
- We compare our second order differential equation with the Second order differential equation specified in the problem to get the value of β
y(x)=c1cosβx+c2sinβx
we use the derivative of a sum rule to differentiate since we have an addition sign in our equation.
Also when differentiating Cosβx and Sinβx we should note that this involves function of a function. so we will differentiate βx in each case and multiply with the differential of c1cosx and c2sinx respectively.
lastly the differential of sinx= cosx and for cosx = -sinx.
Knowing all these we can proceed to solving the problem.
y=c1cosβx+c2sinβx
y'= β×c1×-sinβx+β×c2×cosβx
y'=-c1βsinβx+c2βcosβx
y''=β×-c1β×cosβx + (β×c2β×-sinβx)
y''= -c1β²cosβx -c2β²sinβx
factorize -β²
y''= -β²(c1cosβx +c2sinβx)
y(x)=c1cosβx+c2sinβx
therefore y'' = -β²y
y''+β²y=0
now we compare this with the second order D.E provided in the question
y''+10y=0
this means that β²y=10y
β²=10
B=√10 or 3.16(2 d.p)
Answer: C
Hello,
Step-by-step explanation:
WZ=7-3=4
YW²=XW*WZ=3*4=12 ==> WY=2√3
In the right triangle YWZ, using the Pythagorean's theorem:
YZ²=WY²+WZ²=12+4²=28
YZ=2√7≅5.29150....
Answer C