Number 16- 216
number 17- 180
number 18- 252
Answer:
F(x) = 45*x - (5/2)*x^2 + C
Step-by-step explanation:
Here we want to find the antiderivative of the function:
f(x) = 45 - 5*x
Remember the general rule that, for a given function:
g(x) = a*x^n
the antiderivative is:
G(x) = (a/(n + 1))*a*x^(n + 1) + C
where C is a constant.
Then for the case of f(x) we have:
F(x) = (45/1)*x^1 - (5/2)*x^2 + C
F(x) = 45*x - (5/2)*x^2 + C
Now if we derivate this, we get:
dF(x)/dx = 1*45*x^0 - 2*(5/2)*x
dF(x)/dx = 45 - 5*x
Answer:
When a shape is transformed by rigid transformation, the sides lengths and angles remain unchanged.
Rigid transformation justifies the SAS congruence theorem by keeping the side lengths and angle, after transformation.
Assume two sides of a triangle are:
And the angle between the two sides is:
When the triangle is transformed by a rigid transformation (such as translation, rotation or reflection), the corresponding side lengths and angle would be:
Notice that the sides and angles do not change.
Hence, rigid transformation justifies the SAS congruence theorem by keeping the side lengths and angle, after transformation.
Step-by-step explanation:
45 degrees and 45 degrees
<45 and >45
>45 and <45