The two parabolas intersect for
and so the base of each solid is the set
The side length of each cross section that coincides with B is equal to the vertical distance between the two parabolas, . But since -2 ≤ x ≤ 2, this reduces to .
a. Square cross sections will contribute a volume of
where ∆x is the thickness of the section. Then the volume would be
where we take advantage of symmetry in the first line.
b. For a semicircle, the side length we found earlier corresponds to diameter. Each semicircular cross section will contribute a volume of
We end up with the same integral as before except for the leading constant:
Using the result of part (a), the volume is
c. An equilateral triangle with side length s has area √3/4 s², hence the volume of a given section is
and using the result of part (a) again, the volume is
<span>x² + y² + 14x − 4y − 28 = 0
x² +14x +y² - 4y =28
x²+2*7x +7² -7² + y² - 2*2y +2² - 2² = 28
(x+7)² + (y-2)² -7²-2² =28
</span>(x+7)² + (y-2)²=28+49+4
(x+7)² + (y-2)² =81 is the answer.
Answer: 6
Step-by-step explanation:
6+6=12 12+6=18 thus 6 times 3 is 18
I think you should do it in a decimal idk if im right but in decimal form it is .1875
Answer:
Step-by-step explanation:
acid=16.5 % of 348
=0.165×348
≈57.4 ml