The first step is to determine the distance between the points, (1,1) and (7,9)
We would find this distance by applying the formula shown below
![\begin{gathered} \text{Distance = }\sqrt[]{(x2-x1)^2+(y2-y1)^2} \\ \text{From the graph, } \\ x1\text{ = 1, y1 = 1} \\ x2\text{ = 7, y2 = 9} \\ \text{Distance = }\sqrt[]{(7-1)^2+(9-1)^2} \\ \text{Distance = }\sqrt[]{6^2+8^2}\text{ = }\sqrt[]{100} \\ \text{Distance = 10} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Ctext%7BDistance%20%3D%20%7D%5Csqrt%5B%5D%7B%28x2-x1%29%5E2%2B%28y2-y1%29%5E2%7D%20%5C%5C%20%5Ctext%7BFrom%20the%20graph%2C%20%7D%20%5C%5C%20x1%5Ctext%7B%20%3D%201%2C%20y1%20%3D%201%7D%20%5C%5C%20x2%5Ctext%7B%20%3D%207%2C%20y2%20%3D%209%7D%20%5C%5C%20%5Ctext%7BDistance%20%3D%20%7D%5Csqrt%5B%5D%7B%287-1%29%5E2%2B%289-1%29%5E2%7D%20%5C%5C%20%5Ctext%7BDistance%20%3D%20%7D%5Csqrt%5B%5D%7B6%5E2%2B8%5E2%7D%5Ctext%7B%20%3D%20%7D%5Csqrt%5B%5D%7B100%7D%20%5C%5C%20%5Ctext%7BDistance%20%3D%2010%7D%20%5Cend%7Bgathered%7D)
Distance = 10 units
If one unit is 70 meters, then the distance between both entrances is
70 * 10 = 700 meters
Answer:
It's b
it's kinda hard to explain but it ends up showing .7x.5 on the example, so your answer is B
Answer:

Step-by-step explanation:
This problem gives one the following equation to model the graph of a line: (
). The problem asks one to find the value of (x) when (y=0). Rather than using the graph, an easier way to solve this problem is to substitute (0) in for the value of (y) and then solve for (x) using inverse operations.

Substitute,

Inverse operations,

Round:

As one can see on the graph, this result is very close to the value at which the graph intersects the (x) axis. Thus, one can conclude that (x) does indeed approximately equal (1.4)
Answer:
Do you want the perimeter of this shape?