To solve this problem, we have to use the area of both gauze or the dimensions on each gauze and compare them. we can see that the sheets are not similar as they have different areas.
<h3>Area of Rectangle</h3>
The area of a rectangle is given as the product between the length and it's width.
Data;
- Length = 9in
- Area = 45in^2
- width = ?
- length 2 = 4in
- width 2 = 3in

In the first gauze, the area is given as 45in^2 and we have value of the length. To find the width of the first gauze can be calculated as

We can see that the width are not equal so is their length.
But if we would truly compare them, the accurate way to do that is by their area
The area of the second gauze is given by

From the above calculations, we can see that the sheets are not similar as they have different areas.
Learn more on area of a rectangle here;
brainly.com/question/25292087
The volume is 134.4 and surface area is <span>276.8 hope this helps ! ^_^ dnt forget to mark me brainiest</span>
Answer:

General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
<u>Calculus</u>
Implicit Differentiation
The derivative of a constant is equal to 0
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Product Rule: ![\frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%20%5Bf%28x%29g%28x%29%5D%3Df%27%28x%29g%28x%29%20%2B%20g%27%28x%29f%28x%29)
Chain Rule: ![\frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
Quotient Rule: ![\frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%20%5B%5Cfrac%7Bf%28x%29%7D%7Bg%28x%29%7D%20%5D%3D%5Cfrac%7Bg%28x%29f%27%28x%29-g%27%28x%29f%28x%29%7D%7Bg%5E2%28x%29%7D)
Step-by-step explanation:
<u>Step 1: Define</u>
-y - 2x³ = y²
Rate of change of tangent line at point (-1, -2)
<u>Step 2: Differentiate Pt. 1</u>
<em>Find 1st Derivative</em>
- Implicit Differentiation [Basic Power Rule]:

- [Algebra] Isolate <em>y'</em> terms:

- [Algebra] Factor <em>y'</em>:

- [Algebra] Isolate <em>y'</em>:

- [Algebra] Rewrite:

<u>Step 3: Differentiate Pt. 2</u>
<em>Find 2nd Derivative</em>
- Differentiate [Quotient Rule/Basic Power Rule]:

- [Derivative] Simplify:

- [Derivative] Back-Substitute <em>y'</em>:

- [Derivative] Simplify:

<u>Step 4: Find Slope at Given Point</u>
- [Algebra] Substitute in <em>x</em> and <em>y</em>:

- [Pre-Algebra] Exponents:

- [Pre-Algebra] Multiply:

- [Pre-Algebra] Add:

- [Pre-Algebra] Exponents:

- [Pre-Algebra] Divide:

- [Pre-Algebra] Add:

- [Pre-Algebra] Simplify:

Subtract 22 on both sides