1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leto [7]
3 years ago
5

What is the solution to the system of equations? 5x-3y=-9 2x-5y=4 (___,___)

Mathematics
1 answer:
djverab [1.8K]3 years ago
4 0
\left \{ {{5x-3y=-9\ \ | *(-2)} \atop {2x-5y=4\ \ | *5}} \right. \\\\ \left \{ {{-10x+6y=18} \atop {10x-25y=20}} \right. \\\\+---\\addition\ method\\\\
-19y=38\ \ \ | divide\ by\ -19\\
y=-2\\\\2x=4+5y\ \ \ | divide\ by\ 2\\\\
x=\frac{4+5y}{2}=\frac{4+5*(-2)}{2}=\frac{4-10}{2}=\frac{-6}{2}=-3\\\\Solution:\\ \left \{ {{y=-2} \atop {x=-3}} \right.
You might be interested in
What is 13 divided by 5/8
Norma-Jean [14]
20.8 hope this helps :D
5 0
3 years ago
Read 2 more answers
Plsss help ill give brainiest
Elena L [17]

To solve this problem, we have to use the area of both gauze or the dimensions on each gauze and compare them. we can see that the sheets are not similar as they have different areas.

<h3>Area of Rectangle</h3>

The area of a rectangle is given as the product between the length and it's width.

Data;

  • Length = 9in
  • Area = 45in^2
  • width = ?
  • length 2 = 4in
  • width 2 = 3in

area = length * width

In the first gauze, the area is given as 45in^2 and we have value of the length. To find the width of the first gauze can be calculated as

A = length * width\\width = \frac{area}{length} \\width = \frac{45}{9} \\width = 5in

We can see that the width are not equal so is their length.

But if we would truly compare them, the accurate way to do that is by their area

The area of the second gauze is given by

a = 3 * 4 = 12in^2

From the above calculations, we can see that the sheets are not similar as they have different areas.

Learn more on area of a rectangle here;

brainly.com/question/25292087

3 0
1 year ago
Can someone help me answer this question asap
dsp73
The volume is 134.4 and surface area is <span>276.8 hope this helps ! ^_^ dnt forget to mark me brainiest</span>
7 0
3 years ago
If -y-2x^3=Y^2 then find D^2y/dx^2 at the point (-1,-2) in simplest form
algol13

Answer:

\frac{d^2y}{dx^2} = \frac{-4}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-y - 2x³ = y²

Rate of change of tangent line at point (-1, -2)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Basic Power Rule]:                                                  -y'-6x^2=2yy'
  2. [Algebra] Isolate <em>y'</em> terms:                                                                              -6x^2=2yy'+y'
  3. [Algebra] Factor <em>y'</em>:                                                                                       -6x^2=y'(2y+1)
  4. [Algebra] Isolate <em>y'</em>:                                                                                         \frac{-6x^2}{(2y+1)}=y'
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-6x^2}{(2y+1)}

<u>Step 3: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{-12x(2y+1)+6x^2(2y')}{(2y+1)^2}
  2. [Derivative] Simplify:                                                                                       y'' = \frac{-24xy-12x+12x^2y'}{(2y+1)^2}
  3. [Derivative] Back-Substitute <em>y'</em>:                                                                     y'' = \frac{-24xy-12x+12x^2(\frac{-6x^2}{2y+1} )}{(2y+1)^2}
  4. [Derivative] Simplify:                                                                                      y'' = \frac{-24xy-12x-\frac{72x^4}{2y+1} }{(2y+1)^2}

<u>Step 4: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em> and <em>y</em>:                                                                     y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(-1)^4}{2(-2)+1} }{(2(-2)+1)^2}
  2. [Pre-Algebra] Exponents:                                                                                      y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(1)}{2(-2)+1} }{(2(-2)+1)^2}
  3. [Pre-Algebra] Multiply:                                                                                   y''(-1,-2) = \frac{-48+12-\frac{72}{-4+1} }{(-4+1)^2}
  4. [Pre-Algebra] Add:                                                                                         y''(-1,-2) = \frac{-36-\frac{72}{-3} }{(-3)^2}
  5. [Pre-Algebra] Exponents:                                                                               y''(-1,-2) = \frac{-36-\frac{72}{-3} }{9}
  6. [Pre-Algebra] Divide:                                                                                      y''(-1,-2) = \frac{-36+24 }{9}
  7. [Pre-Algebra] Add:                                                                                          y''(-1,-2) = \frac{-12}{9}
  8. [Pre-Algebra] Simplify:                                                                                    y''(-1,-2) = \frac{-4}{3}
6 0
2 years ago
Can someone help me
kakasveta [241]
Subtract 22 on both sides
8 0
3 years ago
Read 2 more answers
Other questions:
  • Peter deposited $8,975 into a savings account 21 years ago. The account has an interest rate of 3.8% and the balance is currentl
    10·1 answer
  • NEED THIS ANSWER ASAP!!! What is the end behavior of the graph of the polynomial function f(x)= 3x^6+30x^5+75x^4?
    15·1 answer
  • Antonio earns $5 an hour for raking leaves. He also has $35 in savings. Which equation shows the amount of money, m, Antonio wil
    11·1 answer
  • Joseph has started completing the square on the equation 3x^2-7x+12=0. He has worked to the point where he has the expression x^
    9·1 answer
  • Divide and simplify 5/12÷20/36
    10·1 answer
  • What are these number rounded to the nearest whole number<br> 74.542 and 63.73
    10·2 answers
  • Help evaluating the question
    15·2 answers
  • Audrey bought 37 meters of fabric to make curtains for her customer. The fabric cost $750 per meter. When she arrived home she r
    10·2 answers
  • Equation of a slope with slope of 1 and y-intercept of 3
    8·1 answer
  • Work in the five days?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!