Answer:
The probability of making a correct random guess is 0.00053%.
Step-by-step explanation:
Since Clue is a board game in which you must deduce three details surrounding a murder, and in the original game of Clue, the guilty person can be chosen from 66 people, and there are 66 different possible weapons and 99 possible rooms, and at one point in the game, you have narrowed the possibilities down to 44 people, 55 weapons, and 77 rooms, to determine what is the probability of making a random guess of the guilty person, murder weapon, and location from your narrowed-down choices , and the guess being correct, the following calculation must be performed:
(1 / (44x55x77)) x 100 = X
(1 / 186,340) x 100 = X
0.0005366 = X
Therefore, the probability of making a correct random guess is 0.00053%.
Answer:
w < 8 meters ( w must be greater than 0 because length cannot be 0)
Step-by-step explanation:
One side with building is 23 meters, the other opposite side also will be 23 meters (with rope).
Let width (remaining 2 sides) be "w", he has AT MOST 39 meters of rope, so we can write:
Rope Needed = 23 + 2w < 39
Simplifying:

The range of possible values of w is
meters (of course w has to be greater than 0)
Answer:
The perimeter of the triangle can be expressed as 5x + 18.
Step-by-step explanation:
Perimeter of an object is the sum of the length of its sides.
For the required triangle, we have;
length of the base = x
length of the second side = 3x + 9
length of the third side = x + 9
Perimeter of the triangle = length of the base + length of the second side + length of the third side
= x + (3x + 9) + (x + 9)
= x + 3x + 9 + x + 9
= 5x + 18
The perimeter of the triangle can be expressed as 5x + 18.
Answer
Find out the m∠6 .
To prove
As given
a∥e , m∥n , and m∠2 = 112°.
As m∥n
a is the transversal (A line that cuts across two or more (usually parallel) lines is called transverasl.)
Thus
∠ 2 = ∠3 ( Corresponding angle property )
∠3 = 112°
Also
a∥e and m is transversal .
∠ 3 = ∠6 = 112 ° ( Corresponding angle property )
Therefore
∠6 = 112°