Answer:about a third of the residents prefer a park improvement of more trees
Step-by-step explanation:only 27 out of 75 would make it a third
Answer: y = 6
Step-by-step explanation:
A square's area can be done by using s^2, where s is y in this case. Because there are 5 squares, the area of the figure is 5y^2. Because the area is also 180cm, 5y^2=180.
Then divide both sides of the equation by 5 to get y^2 = 36. Then square root both sides of the equation to get y = 6.
Hope it helps <3
Answer:

Step-by-step explanation:
In order to find the value of n that satisfies this equation, we can perform a series of algebraic steps on it to solve for n.
- <em>Distribute in the 8 on the left side:</em>
- <em />
<em> </em> - <em>Add 4n to both sides</em>
- <em>Add 16 to both sides</em>
- <em>Divide both sides by 20</em>
Therefore, n=1 is the value of n that satisfies this equation.
Hope this helped!
Answer:
<u />
General Formulas and Concepts:
<u>Calculus</u>
Limits
Limit Rule [Variable Direct Substitution]:

Special Limit Rule [L’Hopital’s Rule]:

Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Addition/Subtraction]:
![\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28x%29%20%2B%20g%28x%29%5D%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28x%29%5D%20%2B%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bg%28x%29%5D)
Derivative Rule [Basic Power Rule]:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Chain Rule]:
![\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify given limit</em>.

<u>Step 2: Find Limit</u>
Let's start out by <em>directly</em> evaluating the limit:
- [Limit] Apply Limit Rule [Variable Direct Substitution]:

- Evaluate:

When we do evaluate the limit directly, we end up with an indeterminant form. We can now use L' Hopital's Rule to simply the limit:
- [Limit] Apply Limit Rule [L' Hopital's Rule]:

- [Limit] Differentiate [Derivative Rules and Properties]:

- [Limit] Apply Limit Rule [Variable Direct Substitution]:

- Evaluate:

∴ we have <em>evaluated</em> the given limit.
___
Learn more about limits: brainly.com/question/27807253
Learn more about Calculus: brainly.com/question/27805589
___
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Limits