Let suppose the Gas is acting Ideally, Then According to Ideal Gas Equation,
P V = n R T
Solving for P,
P = n R T / V ----- (1)
Data Given;
Moles = n = 1.20 mol
Volume = V = 4 L
Temperature = T = 30 + 273 = 303 K
Gas Constant = R = 0.08206 atm.L.mol⁻¹.K⁻¹
Putting Values in Eq.1,
P = (1.20 mol × 0.08206 atm.L.mol⁻¹.K⁻¹ × 303 K) ÷ 4 L
P = 7.45 atm
Answer:
B: Na(s) + Cl2(g) + 3O2(g) = 2NaClO3(s)
Explanation:
We are looking for enthalpy of formation, so we want to see reactance in their natural standard form.
Thus, we want to see the reactance of Na, Cl2 and O2.
The only option that has the correct form of Na, Cl2 and O2 is B.
Na(s) + Cl2(g) + 3O2(g) = 2NaClO3(s)
Answer:
B. is often done in nature preserves
Explanation:
edge 2021
Answer:
dispersion.
Explanation:
The molecule, PF2Cl3 is trigonal bipyramidal. The dipoles in the molecule cancel out since there is a symmetric charge distribution around the molecule hence the resultant dipole moment of the molecule is zero.
If the molecule is nonpolar, then the dominant intermolecular forces present are the weak dispersion forces, hence the answer above.