The volume measured using such a cylinder will be reported to the nearest 10th mL.
<h3>Cylinder graduation</h3>
10 mL graduated cylinders are always read to the nearest two decimal places.
100 mL graduated cylinders are always read to the nearest 1 decimal place. The nearest 1 decimal place is the same thing as the nearest 10th.
Thus, a reading made using a 100mL increment graduated cylinder would be reported to the nearest 10th mL.
More on cylinder graduation can be found here: brainly.com/question/14427988
#SPJ1
Africa is the answer. Here is the packet, https://cms.springbranchisd.com/Portals/280/staff/robertsh1/exptra%20practice%20KEY.pdf?ver=2012-11-...
The answer is C , hope I helped
Answer:
pH = 5.54
Explanation:
The pH of a buffer solution is given by the <em>Henderson-Hasselbach (H-H) equation</em>:
- pH = pKa + log
![\frac{[CH_3COO^-]}{[CH_3COOH]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BCH_3COO%5E-%5D%7D%7B%5BCH_3COOH%5D%7D)
For acetic acid, pKa = 4.75.
We <u>calculate the original number of moles for acetic acid and acetate</u>, using the <em>given concentrations and volume</em>:
- CH₃COO⁻ ⇒ 0.377 M * 0.250 L = 0.0942 mol CH₃COO⁻
- CH₃COOH ⇒ 0.345 M * 0.250 L = 0.0862 mol CH₃COOH
The number of CH₃COO⁻ moles will increase with the added moles of KOH while the number of CH₃COOH moles will decrease by the same amount.
Now we use the H-H equation to <u>calculate the new pH</u>, by using the <em>new concentrations</em>:
- pH = 4.75 + log
= 5.54
More the number of turns, more will be the magnetic field produced.
Hence wire A will have magnetic field greater than wire B.
Hope this helps!