we know that
<u>The triangle inequality theorem</u> states that the sum of the lengths of any two sides of a triangle is greater than the length of the third side
so
Let
a,b,c------> the length sides of a triangle
The theorem states that three conditions must be met
<u>case 1)</u>

<u>case 2)</u>

<u>case3)</u>

therefore
<u>the answer is the option</u>
B. The sum of the lengths of any two sides of a triangle is greater than the length of the third side.
Answer: $25
Step-by-step explanation:
Answer:∠KJG and ∠FGJ
Step-by-step explanation:
Alternate interior angles are diagonal from each other and are the same value.
Answer:
x = ±i√2
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
Multiplication Property of Equality
Division Property of Equality
Addition Property of Equality
Subtraction Property of Equality<u>
</u>
<u>Algebra II</u>
Imaginary root <em>i</em>
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
5x² - 2 = -12
<u>Step 2: Solve for </u><em><u>x</u></em>
- [Addition Property of Equality] Add 2 on both sides: 5x² = -10
- [Division Property of Equality] Divide 5 on both sides: x² = -2
- [Equality Property] Square root both sides: x = ±√-2
- Rewrite: x = ±√-1 · √2
- Simplify: x = ±i√2