Answer:
2.29x10⁻¹² is Ksp of the salt
Explanation:
The Ksp of the metal hydroxide is:
M(OH)₂(s) ⇄ M²⁺ + 2OH⁻
Ksp = [M²⁺] [OH⁻]²
As you can see in the reaction, 2 moles of OH⁻ are produced per mole of M²⁺. It is possible to find [OH⁻] with pH, thus:
pOH = 14- pH
pOH = 14 - 10.22
pOH = 3.78
pOH = -log[OH⁻]
<em>1.66x10⁻⁴ = [OH⁻]</em>
And [M²⁺] is the half of [OH⁻], <em>[M²⁺] = 8.30x10⁻⁵</em>
<em />
Replacing in Ksp formula:
Ksp = [8.30x10⁻⁵] [1.66x10⁻⁴]²
Ksp = 2.29x10⁻¹² is Ksp of the salt
Answer:
Charles's law states that V1 / T1 = V2 / T2. However, you must make sure that T is in Kelvin, not C.
1.19E6 / (11 + 273) = V2 / (113 + 273)
V2 = 1.62E6
Explanation:
Gases expand when heated if the container they are in is flexible. When the gas is heated its molecules move faster and faster. The collisions of the gas particles with the flexible container wall expand.
Explanation:
It is known that rate of effusion of gases are inversely proportional to the square root of their molar masses.
And, half of the helium (1.5 L) effused in 24 hour. So, the rate of effusion of He gas is calculated as follows.
= 0.0625 L/hr
As, molar mass of He is 4 g/mol and molar mass of
is 32 g/ mol.
Now,

= 2.83
or, rate of
= 
Rate of
= 0.022 L/hr.
This means that 0.022 L of
gas effuses in 1 hr
So, time taken for the effusion of 1.5 L of
gas is calculated as follows.
= 68.18 hour
Thus, we can conclude that 68.18 hours will it take for half of the oxygen to effuse through the membrane.
Answer:
44 g oxygen are needed.
Explanation:
Given data:
Mass of oxygen needed = ?
Mass of ammonia = 18.2 g
Solution:
Chemical equation:
4NH₃ + 5O₂ → 4NO + 6H₂O
Now we will calculate the number of moles of ammonia:
Number of moles = mass/molar mass
Number of moles = 18.2 g/ 17 g/mol
Number of moles = 1.1 mol
Now we will compare the moles of ammonia with oxygen from balance chemical equation.
NH₃ : O₂
4 : 5
1.1 : 5/4×1.1 = 1.375 mol
Mass of oxygen needed:
Mass = number of moles × molar mass
Mass = 1.375 mol × 32 g/mol
Mass = 44 g