Answer:
0.0918
Step-by-step explanation:
We know that the average amount of money spent on entertainment is normally distributed with mean=μ=95.25 and standard deviation=σ=27.32.
The mean and standard deviation of average spending of sample size 25 are
μxbar=μ=95.25
σxbar=σ/√n=27.32/√25=27.32/5=5.464.
So, the average spending of a sample of 25 randomly-selected professors is normally distributed with mean=μ=95.25 and standard deviation=σ=27.32.
The z-score associated with average spending $102.5
Z=[Xbar-μxbar]/σxbar
Z=[102.5-95.25]/5.464
Z=7.25/5.464
Z=1.3269=1.33
We have to find P(Xbar>102.5).
P(Xbar>102.5)=P(Z>1.33)
P(Xbar>102.5)=P(0<Z<∞)-P(0<Z<1.33)
P(Xbar>102.5)=0.5-0.4082
P(Xbar>102.5)=0.0918.
Thus, the probability that the average spending of a sample of 25 randomly-selected professors will exceed $102.5 is 0.0918.
Answer:
Explanation:
The <em>end behavior</em> of a <em>rational function</em> is the limit of the function as x approaches negative infinity and infinity.
Note that the the values of even functions are the same for ± x. That implies that their limits for ± ∞ are equal.
The limits of the quadratic function of general form as x approaches negative infinity or infinity, when is positive, are infinity.
That is because as the absolute value of x gets bigger y becomes bigger too.
In mathematical symbols, that is:
Hence, the graphs of any quadratic function with positive coefficient of the quadratic term will have the same end behavior as the graph of y = 3x².
Two examples are:
Answer:
130 degrees
Step-by-step explanation:
let the angle be x
2x+45+55=360(Sum of angles in quad)
2x=260
x=130
HETY is a parallelogram.
HT and EY are diagonals. We know that diagonals divides the parallelogram into two equal parts.
So ar(HET) = ar(HTY)
And, ar(HEY) = ar(EYT) now, in AHET, diagonal EY bisects the line segment HT and also the AHET,
∴ar(AHOE) = ar(AEOT)
Similarly in AETY
ar(ΔΕΟΤ) = ar(ΔΤΟΥ)
And in AHTY,
ar(ATOY) = ar(AHOY)
That means diagonals in parallelogram divides it into four equal parts.
Hence Proofed.
Answer:
y = 8/p+q+4.
Step-by-step explanation: