Answer:
Small holes in plants that allow carbon dioxide in and oxygen and water vapor out
Explanation:
Stomata are tiny holes that open and close for the plant to breathe.
Answer:
3.15 × 10⁻⁶ mol H₂/L.s
1.05 × 10⁻⁶ mol N₂/L.s
Explanation:
Step 1: Write the balanced equation
2 NH₃ ⇒ 3 H₂ + N₂
Step 2: Calculate the rate of production of H₂
The molar ratio of NH₃ to H₂ is 2:3. Given the rate of decomposition of NH₃ is 2.10 × 10⁻⁶ mol/L.s, the rate of production of H₂ is:
2.10 × 10⁻⁶ mol NH₃/L.s × 3 mol H₂/2 mol NH₃ = 3.15 × 10⁻⁶ mol H₂/L.s
Step 3: Calculate the rate of production of N₂
The molar ratio of NH₃ to N₂ is 2:1. Given the rate of decomposition of NH₃ is 2.10 × 10⁻⁶ mol/L.s, the rate of production of N₂ is:
2.10 × 10⁻⁶ mol NH₃/L.s × 1 mol N₂/2 mol NH₃ = 1.05 × 10⁻⁶ mol N₂/L.s
If the person had clogged arteries and high blood pressure, then went on a healthy diet, the person would start losing weight. They would have a more stable blood pressure (since they are eating healthy foods, with less saturated fat) and the clogged arteries would look significantly better. He/she might lose her/his risk of developing diabetes, heart disease, cancer, etc. Most of her/his health issues would start to balance out if they started eating a diet low in saturated fat.
I hope this helps!
~kaikers
<h3>
Answer:</h3>
458 g H₂SO₄
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
4.67 mol H₂SO₄
<u>Step 2: Identify Conversions</u>
[PT] Molar Mass of H - 1.01 g/mol
[PT] Molar Mass of S - 32.07 g/mol
[PT] Molar Mass of O - 16.00 g/mol
Molar Mass of H₂SO₄ - 2(1.01) + 32.07 + 4(16.00) = 98.09 g/mol
<u>Step 3: Convert</u>
- Set up:

- Multiply/Divide:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
458.08 g H₂SO₄ ≈ 458 g H₂SO₄