Answer:
The
of a substrate will be "10 μM".
Explanation:
The given values are:

![[Substract] = 40 \ \mu M](https://tex.z-dn.net/?f=%5BSubstract%5D%20%3D%2040%20%5C%20%5Cmu%20M)

Reaction velocity, 
As we know,
⇒ ![Vo=\frac{K_{cat}[E_{t}][S]}{K_{m}+[S]}](https://tex.z-dn.net/?f=Vo%3D%5Cfrac%7BK_%7Bcat%7D%5BE_%7Bt%7D%5D%5BS%5D%7D%7BK_%7Bm%7D%2B%5BS%5D%7D)
On putting the estimated values, we get
⇒ 
⇒ 
⇒ 
On subtracting "40" from both sides, we get
⇒ 
⇒ 
Answer:
Explanation:
Problem 1
<u>1. Data</u>
<u />
a) P₁ = 3.25atm
b) V₁ = 755mL
c) P₂ = ?
d) V₂ = 1325 mL
r) T = 65ºC
<u>2. Formula</u>
Since the temeperature is constant you can use Boyle's law for idial gases:

<u>3. Solution</u>
Solve, substitute and compute:


Problem 2
<u>1. Data</u>
<u />
a) V₁ = 125 mL
b) P₁ = 548mmHg
c) P₁ = 625mmHg
d) V₂ = ?
<u>2. Formula</u>
You assume that the temperature does not change, and then can use Boyl'es law again.

<u>3. Solution</u>
This time, solve for V₂:

Substitute and compute:

You must round to 3 significant figures:

Problem 3
<u>1. Data</u>
<u />
a) V₁ = 285mL
b) T₁ = 25ºC
c) V₂ = ?
d) T₂ = 35ºC
<u>2. Formula</u>
At constant pressure, Charle's law states that volume and temperature are inversely related:

The temperatures must be in absolute scale.
<u />
<u>3. Solution</u>
a) Convert the temperatures to kelvins:
- T₁ = 25 + 273.15K = 298.15K
- T₂ = 35 + 273.15K = 308.15K
b) Substitute in the formula, solve for V₂, and compute:

You must round to two significant figures: 290 ml
Problem 4
<u>1. Data</u>
<u />
a) P = 865mmHg
b) Convert to atm
<u>2. Formula</u>
You must use a conversion factor.
Divide both sides by 760 mmHg

<u />
<u>3. Solution</u>
Multiply 865 mmHg by the conversion factor:

The arrangement in space and the interatomic distances and angles of the atoms in crystals, usually determined by x-ray diffraction measurements
Answer:
carbon dioxide and oxygen