Well, first of all, the first statement (ABC = ADC) looks like it just says
that the two halves of the little square ... each side of the diagonal ...
are congruent. That's no big deal, and it's no help in answering the
question.
The effect of the dilation is that all the DIMENSIONS of the square
are doubled ... each side of the square becomes twice as long.
Then, when you multiply (length x width) to get the area, you'd have
Area = (2 x original length) x (2 x original width)
and that's
the same as (2 x 2) x (original length x original width)
= (4) x (original area) .
Here's an easy, useful factoid to memorize:
-- Dilate a line (1 dimension) by 'x' times . . . multiply the length by x¹
-- Dilate a shape (2 dimensions) by 'x' . . . multiply area by x²
-- Dilate a solid (3 dimensions) by 'x' . . . multiply volume by x³
And that's all the dimensions we have in our world.
_______________________________
Oh, BTW . . .
-- Dilate a point (0 dimensions) by 'x' . . . multiply it by x⁰ (1)
A. The angles at the intersection of the two lines can be proven to be congruent and complementary . so they meet at a right angle and the lines are perpendicular.
<u>Step-by-step explanation:</u>
In above question, In order to find whether AB ⊥ CD, Using compass construction & rounder , keep the tip at A and cut arcs at line CD . Follow the same process again with tip at B and cut arcs at line CD . Do this both sides of Line CD i.e. on left side of AB & on right side of AB. Now, join the intersection points of both side arcs which are intersecting each other. Now, to prove both are right angle to each other i.e. AB ⊥ CD , can be done by proving congruent and complementary , so they meet at a right angle and Hence , the lines are perpendicular i.e. AB is inclined to CD at angle of 90°.
The answer is 2 if your dividing if not comment me and ill answer it
Answer:
x - 2 ≥ 0
Step-by-step explanation:
The expression under the square root cannot be negative, thus
x - 2 ≥ 0 , that is
x ≥ 2
Answer:
i think its quadratic
Step-by-step explanation: