Answer:
Step-by-step explanation:
You have the points (4, 14), (22, 6), and (16, 18).
It is important to remember that he first number of each point is the x-coordinate of that point and the second number of each one of them is the y-coordinate of that point.
Therefore, knowing the above, you can mark each point, as you can observe in the image attached, and then you can connect the points to form the triangle shown in the image.
Answer:
1) 

2) 

3) 

4) 

Step-by-step explanation:
The quadratic formula is given by:

We can use this formula in order to solve the following equations:
1. x^2 − 2x = 12 → a = 1, b = −2, c = −12
For this case if we apply the quadratic formula we got:



2. 1/2x^2 − 6x = 2 → a = 1 / 2, b = −6, c = −2
For this case if we apply the quadratic formula we got:



3. 2p^2 + 8p = 7 → a = 2, b = 8, c = −7
For this case if we apply the quadratic formula we got:



4. 2y^2 + 3y − 5 = 4 → a = 2, b = 3, c = −9
For this case if we apply the quadratic formula we got:



Answer:
A) H0: μ = 11 vs. Ha: μ > 11
Step-by-step explanation:
The null hypothesis (H0) tries to show that no significant variation exists between variables or that a single variable is no different than its mean. While an alternative Hypothesis (Ha) attempt to prove that a new theory is true rather than the old one. That a variable is significantly different from the mean.
Therefore, for the case above;
The null hypothesis is that the average number of headaches per student during a semester of Statistics is 11.
H0: μ = 11
The alternative hypothesis is that the average number of headaches per student during a semester of Statistics is greater than 11.
Ha: μ > 11
Answer:
Step-by-step explanation:
<u>Find the percentage of $133.60 of $167.00:</u>
Answer:
P = 1 / 40320 or P = 2.48*10⁻⁵
Step-by-step explanation:
The total number of outcomes To is:
To = 8! To = 8*7*6*5*4*3*2
To = 40320
Of all these outcomes there is only one proper outcome, therefore the probability of having all men and women in alphabetical order is:
P = 1 / 40320 or P = 2.48*10⁻⁵