Answer:
113
Step-by-step explanation:
Let the number of adult tickets sold =a
Let the number of student tickets sold =s
A total of 259 tickets were sold, therefore:
a+s=259
Adult tickets were sold for $24 each and student tickets were sold for $16 each.
Total Revenue = $5,312
Therefore:
24a+16s=5,312
We solve the two derived equations simultaneously.
From the first equation
a=259-s
Substitute a=259-s into 24a+16s=5,312
24(259-s)+16s=5,312
6216-24s+16s=5,312
-8s=5,312-6216
-8s=-904
Divide both sides by -8
s=113
Therefore, 113 student tickets were sold.
Answer:
<em>First even integer: 6</em>
Step-by-step explanation:
<u>Inequalities</u>
Assume x is the first even integer. The next integer is x+2, and the last integer ix x+4.
The condition states that the sum of the first and the second number is 15 less than three times the third. This takes us to the inequality:

Operating:

Subtracting 2 and 2x:

Simplifying:

Solving:
x>5
There are infinitely many solutions. For example, for x=6 (first even number into the solution interval):
First integer: 6
Second integer: 8
Third integer: 10
There are other solutions, like 20,22,24 but the first set is 6,8,10.
It might be 5 units
Not totally sure
Answer:
The first option
(-10, -7)
Step-by-step explanation:
Also I really like your pfp <33