You have to build the triangles.
They are such that:
h is the common height
x is the horizontal distance from the plane to one stone
Beta is the angle between x and the hypotenuse
Then in this triangle: tan(beta) = h / x ......(1)
1 - x is the horizontal distance from the plane to the other stone
alfa is the angle between 1 - x and h
Then, in this triangle: tan (alfa) = h / [1 -x ] ...... (2)
from (1) , x = h / tan(beta)
Substitute this value in (2)
tan(alfa) = h / { [ 1 - h / tan(beta)] } =>
{ [ 1 - h / tan(beta) ] } tan(alfa) = h
[tan(beta) - h] tan(alfa) = h*tan(beta)
tan(beta)tan(alfa) - htan(alfa) = htan(beta)
h [tan(alfa) + tan(beta) ] = tan(beta) tan (alfa)
h = tan(beta)*tan(alfa) / (t an(alfa) + tan(beta) )
What you need to do is give these problems a common denominator. Which makes 3/21 and14/21 respectively. Logically, you need to walk 4/21 of the trail. This can’t be simplified further.
Answer:
River D: 2780 River C: 2280
Step-by-step explanation:
Please mark brainliest
The question is asking for you to plug in each number in the brackets into x and solve for y, or f(x), g(x), etc. I will do no. 19 as an example:
f(x) = -3x + 1
This problem has the domains -2, -1, and 0. First, we'll start with -2:
f(x) = -3(-2) + 1
f(x) = 6 + 1
f(x) = 7
Now -1:
f(x) = -3(-1) + 1
f(x) = 3 + 1
f(x) = 4
Lastly, 0:
f(x) = -3(0) + 1
f(x) = 0 + 1
f(x) = 1
For question 23, we can use the distance formula, which is ratextime. The domain in this case is time (t). You can set up a function like this: d(t) = 60t
I got the last answer on the screen.