Hey there!
<u>Use the quadratic formula to find the solution(s). x² + 2x - 8 = 0</u>
x = -4 or x = 2 ✅
<em><u>Quadratic</u></em><em><u> </u></em><em><u>formula </u></em><em><u>:</u></em><em><u> </u></em>ax² + bx + c = 0 where a ≠ 0
The number of real-number solutions <em>(roots)</em> is determined by the discriminant (b² - 4ac) :
- If b² - 4ac > 0 , There are 2 real-number solutions
- If b² - 4ac = 0 , There is 1 real-number solution.
- If b² - 4ac < 0 , There is no real-number solution.
The <em><u>roots</u></em> of the equation are determined by the following calculation:

Here, we have :
1) <u>Calculate </u><u>the </u><u>discrim</u><u>i</u><u>n</u><u>ant</u><u> </u><u>:</u>
b² - 4ac ⇔ 2² - 4(1)(-8) ⇔ 4 - (-32) ⇔ 36
b² - 4ac = 36 > 0 ; The equation admits two real-number solutions
2) <u>Calculate </u><u>the </u><u>roots </u><u>of </u><u>the </u><u>equation</u><u>:</u>
▪️ (1)

▪️ (2)

>> Therefore, your answers are x = -4 or x = 2.
Learn more about <u>quadratic equations</u>:
brainly.com/question/27638369
Answer:
b. 
a. ![\displaystyle [8x + 12y]^2 + [6x + 9y]^2 = [10x + 15y]^2](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5B8x%20%2B%2012y%5D%5E2%20%2B%20%5B6x%20%2B%209y%5D%5E2%20%3D%20%5B10x%20%2B%2015y%5D%5E2)
Step-by-step explanation:
b. 
a. ![\displaystyle [8x + 12y]^2 + [6x + 9y]^2 = [10x + 15y]^2](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5B8x%20%2B%2012y%5D%5E2%20%2B%20%5B6x%20%2B%209y%5D%5E2%20%3D%20%5B10x%20%2B%2015y%5D%5E2)
The two expressions are identical on each side of the equivalence symbol, therefore they are an identity.
I am joyous to assist you anytime.
Answer:
Step-by-step explanation:
B. Yes, because it passes the vertical line test, is the answer.
5) Obtuse triangle because the top angle is more than 90 degrees
Hello there!
Write a compound inequality for this sentence: 'w' is less than 4 and greater than or equal to -8
Only use 'w' once.
W is less than four ~

W is greater than or equal to -8 ~

If we were to put this together, it would look like:

I hope I helped!
Let me know if you need anything else!
~ Zoe