Answer:
(x, y) = (2 2/9, -1 4/9)
Step-by-step explanation:
Equate the values of y and solve for x.
1/4x -2 = -2x +3
(2 1/4)x = 5 . . . . . . . . add 2+2x to both sides
x = 20/9 = 2 2/9 . . . multiply by 4/9
y = -2(2 2/9) +3 = -4 4/9 +3 . . . . substitute for x in the second equation
y = -1 4/9
The solution is x = 2 2/9, y = -1 4/9.
Answer: $659.40
Step-by-step explanation: You start with 471.00 X 0.4 which equals $188.40. So then you add $471.00 and $188.40 and you get $659.40!
The question is:
Check whether the function:
y = [cos(2x)]/x
is a solution of
xy' + y = -2sin(2x)
with the initial condition y(π/4) = 0
Answer:
To check if the function y = [cos(2x)]/x is a solution of the differential equation xy' + y = -2sin(2x), we need to substitute the value of y and the value of the derivative of y on the left hand side of the differential equation and see if we obtain the right hand side of the equation.
Let us do that.
y = [cos(2x)]/x
y' = (-1/x²) [cos(2x)] - (2/x) [sin(2x)]
Now,
xy' + y = x{(-1/x²) [cos(2x)] - (2/x) [sin(2x)]} + ([cos(2x)]/x
= (-1/x)cos(2x) - 2sin(2x) + (1/x)cos(2x)
= -2sin(2x)
Which is the right hand side of the differential equation.
Hence, y is a solution to the differential equation.
Answer:
The answer is A, ab<cd.
Step-by-step explanation:
If a, b, c, d are positive, and if a b < c d , then Ab>cd is always true
Your answer will be congruent