Answer:
12m
Step-by-step explanation:
You can break this shape down into a square and a trapezoid. Frist you can find the area of the square by multiplying 2 by 5 to get 10. Then you would find the area of a trapezoid by doing Area = 1/2height(base1+base2). We can find the height by subtracting 5 from 9. (We do this because we know the side of the square is 5m) Therefore the height would be 4m. We know the bases are 2 and 4. From there you can plug those numbers in to the formula. Area=1/2 * 4 (2 + 4)
Area= 1/2 * 4 (6)
Area = 2(6)
Area = 12m
Answer: true
Step-by-step explanation:
Answer:
midpoint formula: (x₁ + x₂)/2, (y₁ + y₂)/2
distance: √[(x₂ - x₁)² + (y₂ - y₁)²]
Step-by-step explanation:
What points are you trying to calculate the distance and the midpoint for?
Answer:
(1, 3)
Step-by-step explanation:
You are given the h coordinate of the vertex as 1, but in order to find the k coordinate, you have to complete the square on the parabola. The first few steps are as follows. Set the parabola equal to 0 so you can solve for the vertex. Separate the x terms from the constant by moving the constant to the other side of the equals sign. The coefficient HAS to be a +1 (ours is a -2 so we have to factor it out). Let's start there. The first 2 steps result in this polynomial:
. Now we factor out the -2:
. Now we complete the square. This process is to take half the linear term, square it, and add it to both sides. Our linear term is 2x. Half of 2 is 1, and 1 squared is 1. We add 1 into the set of parenthesis. But we actually added into the parenthesis is +1(-2). The -2 out front is a multiplier and we cannot ignore it. Adding in to both sides looks like this:
. Simplifying gives us this:

On the left we have created a perfect square binomial which reflects the h coordinate of the vertex. Stating this binomial and moving the -3 over by addition and setting the polynomial equal to y:

From this form,

you can determine the coordinates of the vertex to be (1, 3)
<span><u><em>The correct answer is:</em></u>
180</span>°<span> rotation.
<u><em>Explanation: </em></u>
<span>Comparing the points D, E and F to D', E' and F', we see that the x- and y-coordinates of each <u>have been negated</u>, but they are still <u>in the same position in the ordered pair. </u>
<u>A 90</u></span></span><u>°</u><span><span><u> rotation counterclockwise</u> will take coordinates (x, y) and map them to (-y, x), negating the y-coordinate and swapping the x- and y-coordinates.
<u> A 90</u></span></span><u>°</u><span><span><u> rotation clockwise</u> will map coordinates (x, y) to (y, -x), negating the x-coordinate and swapping the x- and y-coordinates.
Performing either of these would leave our image with a coordinate that needs negated, as well as needing to swap the coordinates back around.
This means we would have to perform <u>the same rotation again</u>; if we began with 90</span></span>°<span><span> clockwise, we would rotate 90 degrees clockwise again; if we began with 90</span></span>°<span><span> counter-clockwise, we would rotate 90 degrees counterclockwise again. Either way this rotates the figure a total of 180</span></span>°<span><span> and gives us the desired coordinates.</span></span>