![\bf \textit{difference and sum of cubes} \\\\ a^3+b^3 = (a+b)(a^2-ab+b^2) \\\\ a^3-b^3 = (a-b)(a^2+ab+b^2) \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \begin{cases} 729=27^2\\ \qquad (3^3)^2\\ 1000=10^3 \end{cases}\implies 729^{15}+1000\implies ((3^3)^2)^{15}+10^3 \\\\\\ ((3^2)^{15})^3+10^3\implies (3^{30})^3+10^3\implies (3^{30}+10)~~[(3^{30})^2-(3^{30})(10)+10^2] \\\\\\ (3^{30})^3+10^3\implies (3^{30}+10)~~~~[(3^{60})-(3^{30})(10)+10^2]](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bdifference%20and%20sum%20of%20cubes%7D%20%5C%5C%5C%5C%20a%5E3%2Bb%5E3%20%3D%20%28a%2Bb%29%28a%5E2-ab%2Bb%5E2%29%20%5C%5C%5C%5C%20a%5E3-b%5E3%20%3D%20%28a-b%29%28a%5E2%2Bab%2Bb%5E2%29%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20%5Cbegin%7Bcases%7D%20729%3D27%5E2%5C%5C%20%5Cqquad%20%283%5E3%29%5E2%5C%5C%201000%3D10%5E3%20%5Cend%7Bcases%7D%5Cimplies%20729%5E%7B15%7D%2B1000%5Cimplies%20%28%283%5E3%29%5E2%29%5E%7B15%7D%2B10%5E3%20%5C%5C%5C%5C%5C%5C%20%28%283%5E2%29%5E%7B15%7D%29%5E3%2B10%5E3%5Cimplies%20%283%5E%7B30%7D%29%5E3%2B10%5E3%5Cimplies%20%283%5E%7B30%7D%2B10%29~~%5B%283%5E%7B30%7D%29%5E2-%283%5E%7B30%7D%29%2810%29%2B10%5E2%5D%20%5C%5C%5C%5C%5C%5C%20%283%5E%7B30%7D%29%5E3%2B10%5E3%5Cimplies%20%283%5E%7B30%7D%2B10%29~~~~%5B%283%5E%7B60%7D%29-%283%5E%7B30%7D%29%2810%29%2B10%5E2%5D)
now, we could expand them, but there's no need, since it's just factoring.
Supplementary angles sum up to 180°, suppose the supplement of 161° is x. Then
161+x=180
solving for x we subtract 161 from both sides
161-161+x=180-161
x=19
thus the supplement is 19°
Okay, so first you make f(x) = y and switch x and y. So the equation becomes:
x = y^2 - 16
The next step is to get y by itself. So first you add 16 to both sides:
x + 16 = y^2
Now you square root everything, so the final answer is going to be:
the square root of x + 4 = y
Answer: 3/8x
To find the least common denominator first convert all integers and mixed numbers (mixed fractions) into fractions. Then find the lowest common multiple of the denominators. This number is same as the least common denominator .You can then write each term as an equivalent fraction with the same LCD denominator.