Answer:
The circulatory and respiratory systems interact to transport carbon dioxide to the lungs, where it is expelled from the body.
Explanation:
Carbon dioxide produced by the cells and tissues during cellular respiration is removed from the body through the interaction of the circulatory and respiratory system. The medium of transport of carbon dioxide is the blood which carries to the lungs, where it is expelled from the body in ordernto maintain homeostasis in the body.
Carbon dioxide molecules are transported in the blood from body tissues to the lungs in three ways:
1. Dissolution directly into the blood - due to its greater solubility in blood than oxygen, carbon dioxide is dissolved in blood plasma. On reaching the lungs, it leaves the blood by diffusion and is then expelled out of the body.
2. Binding to hemoglobin - carbon dioxide binds reversibly with haemoglobin in the red blood cells to form a molecule called carbaminohemoglobin. When it reaches the lungs, the carbon dioxide freely dissociate from the hemoglobin and is expelled from the body.
3. Carried as a bicarbonate ion - the majority of carbon dioxide molecules are carried as part of the bicarbonate buffer system. In this system, carbon dioxide diffuses into the red blood cells. The enzyme carbonic anhydrase within the red blood cells quickly converts the carbon dioxide into carbonic acid (H2CO3) which then dissociates into bicarbonate and hydrogen ions. The bicarbonate ions leaves the red blood cells in exchange for chloride ions in the plasma. The bicarbonate ions then travel in plasma to the lungs, where they enter the red blood cells again. It combines with hydrogen ions from the haemoglobin to form carbonic acid. Carbonic anhydrase breaks carbonic acid down into water and carbon dioxide which is then expelled from the lungs.
Answer: The bacteria transformed with this particular plasmid will form white colonies on the plates containing ampicillin and Xgal.
Explanation: The lacZ gene produces an enzyme called β-galactosidase which is responsible for the breakdown of lactose into glucose and galactose. The lacZ gene is one of the three genes (the other two being lacA and lacY) of the lac operon which is responsible for the transport and mechanism of lactose in E. coli and many other bacteria.
In recombinant DNA technology, when a plasmid is to be used to transform a host cell, such markers are used to help screen the transformed cells from the ones that have not taken up the plasmid. Xgal present in the plates is an artificial substrate which is hydrolyzed by
β-galactosidase into 5-bromo-4-chloro-indoxyl which will dimerize and oxidise into 5,5'-dibromo-4,4'dichloro-indigo. This is a blue pigment which will give blue color to the bacterial cells. Introducing a DNA fragment in this lacZ gene will make it non-functional so it will not be able to produce the enzyme.
Therefore, when a bacterial cell is transformed with a plasmid containing ampicillin resistance gene and a DNA fragment introduced in the lacZ gene and then grown on plates containing ampicillin and Xgal, white colored colonies will appear. The white colonies will show the bacterial cells that have successfully taken up the plasmid with the DNA fragment incorporated in the lacZ gene as this will render the gene non-functional and will not produce β-galactosidase which will breakdown Xgal to give blue colonies. Since the plates contain ampicillin, only the bacterial cells that have been successfully transformed with the plasmid ( the ones that have the DNA fragment and the ones without it) will grow as the ampicillin resistance will give them resistance against ampicillin in the plates. The bacterial cells that have not taken up the plasmid will not be resistant to ampicillin and will not form colonies on the plate.
This is called blue-white screening which is used to identify successfully transformed host cells. A picture of this is given in the attachment, taken from the following website:
https://www.mun.ca/biology/scarr/Blue_&_White_Colonies.html
Answer:
genetic diversity
red yellow and orange bell peppers
individuals of the same lizard species
species diversity
a park has eighty species of trees
five bird species are at a bird feeder
Explanation:
"They are <span>multicellular" is not a characteristic of bacteria. Although it should be noted that the smallest life forms don't necessarily have to be bacterial. </span>