We can't read your minds we need to see the options
Answer:
Electron transport chain and ATP synthase
Explanation:
The inner mitochondrial membrane contains an electron transport chain and ATP synthesis. Four membrane protein complexes serve as the electron carriers and are embedded in the inner mitochondrial membrane. These protein complexes are called complex I, II, III and IV. Transfer of electrons from NADH and FADH2 to terminal electron acceptor oxygen occurs via these protein complexes.
During electron transfer, the pumping of protons towards the inner mitochondrial membrane creates an electrochemical gradient. The downhill transfer of protons back to the matrix via proton channel of ATP synthase drives phosphorylation of ADP. Therefore, presence of all the protein complexes of the electron transport chain and ATP synthase is required for electron transfer and ATP synthesis.
The cytoplasm splits in two and the cell divides
Answer:
Bacterial
Explanation:
Antibiotics work against bacteria.
Answer:
Glycolysis requires two molecules of NAD+ per glucose molecule, producing two NADHs as well as two hydrogen ions and two molecules of water. The end product of glycolysis is pyruvate, which the cell can further metabolize to yield a large amount of additional energy.
Explanation: