The answer to your question would be B.
I hope this helped:D
Answer:
Infinite pairs of numbers
1 and -1
8 and -8
Step-by-step explanation:
Let x³ and y³ be any two real numbers. If the sum of their cube roots is zero, then the following must be true:
![\sqrt[3]{x^3}+ \sqrt[3]{y^3}=0\\ \sqrt[3]{x^3}=- \sqrt[3]{y^3}\\x=-y](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%5E3%7D%2B%20%5Csqrt%5B3%5D%7By%5E3%7D%3D0%5C%5C%20%5Csqrt%5B3%5D%7Bx%5E3%7D%3D-%20%5Csqrt%5B3%5D%7By%5E3%7D%5C%5Cx%3D-y)
Therefore, any pair of numbers with same absolute value but different signs fit the description, which means that there are infinite pairs of possible numbers.
Examples: 1 and -1; 8 and -8; 27 and -27.
Answer:
x = 8
Step-by-step explanation:
40 + 6x + 2 = 90 {Complementary angles}
Combine like terms
40+ 2 + 6x = 90
42 +6x = 90 {Subtract 42 form both sides}
6x = 90 - 42
6x = 48 {divide both sides by 6}
6x/6 = 48/6
x = 8