The nearest whole number would be 93 because you round up if the decimal place is greater than 5 and down if it's less.
So I'm going to assume that this question is asking for <u>non extraneous solutions</u>, or solutions that are found in the equation <em>and</em> are valid solutions when plugged back into the equation. So firstly, subtract 2 on both sides of the equation:

Next, square both sides:

Next, subtract x and add 2 to both sides of the equation:

Now we are going to be factoring by grouping to find the solution(s). Firstly, what two terms have a product of 6x^2 and a sum of -5x? That would be -3x and -2x. Replace -5x with -2x - 3x:

Next, factor x^2 - 2x and -3x + 6 separately. Make sure that they have the same quantity on the inside of the parentheses:

Now you can rewrite the equation as 
Now, apply the Zero Product Property and solve for x as such:

Now, it may appear that the answer is C, however we need to plug the numbers back into the original equation to see if they are true as such:

Since both solutions hold true when x = 2 and x = 3, <u>your answer is C. x = 2 or x = 3.</u>
The sale price of 3 pepper plants after a 20% discount is $3
The regular price of one pepper plant is $5 if Wes wants to buy 3 pepper plants 5x3 is 15 and since he can use a 20% off coupon on the pepper plants. 20% of 15 is 3 meaning the sale price for 3 pepper plants after using the 20% discount coupon is $3.
The <em>exponential</em> function y = 290 · 0.31ˣ reports a decay as its <em>growth</em> rate is less than 1 and greater than 0. Its <em>percentage</em> rate of decrease is equal to 69 %.
<h3>How to determine the behavior of an exponential function</h3>
<em>Exponential</em> functions are <em>trascendental</em> functions, these are, functions that cannot be described <em>algebraically</em>. The <em>simplest</em> form of <em>exponential</em> functions is shown below:
y = a · bˣ (1)
Where:
- a - Initial value
- b - Growth rate
- x - Independent variable.
- y - Dependent variable.
Please notice that this kind of <em>exponential</em> function reports a <em>growth</em> for b > 1 and <em>decay</em> for b < 1 and b > 0. According to the statement we have the function y = 290 · 0.31ˣ, then we conclude that the exponential function given reports a <em>decay</em>.
The <em>percentage</em> rate of decrease is determined by the following formula:
100 × (1-0.31) = 100 × 0.69 = 69 %
The <em>percentage</em> rate of decrease related to the <em>exponential</em> function is 69 %.
To learn more on exponential functions: brainly.com/question/11487261
#SPJ1
Answer:
expression a
Step-by-step explanation:
The given expression is 15+0.25(d−1).
let suppose,
15 = a
0.25(d−1) = b
we get a + b
It clearly indicates the given expression is sum of two entities, we can exclude option b and option d.
Now we are left with option a and c, for that we have to evaluate the term b
b = 0.25(d−1) <u>that is the additional amount after d days</u>
Therefore, expression a is correct.