Here if we assume that there is no air friction on both balls then we can say

now the acceleration is given as


so here both the balls will have same acceleration irrespective of size and mass
so we can say that to find out the time of fall of ball we can use


now from above equation we can say that time taken to hit the ground will be same for both balls and it is irrespective of its mass and size
Answer:

Explanation:
The force is defined as the negative of the derivative of the potential energy:

If we use the potential energy function given in this problem:

and we calculate the force, we get:

So, the force is

Answer:
A. Zero
Explanation:
Given data,
The charge of the test charge, q = 1 C
The distance the charge moved against the filed of intensity, x = 30 cm
= 0.3 m
The electric field intensity, E = 50 N/C
The energy stored in the charge at 0.3 m is given by the formula,
V = k q/r
Where,
= 9 x 10⁹ Nm²C⁻²
The charge is moved from the potential V₁ to V₂ at 30 cm
Substituting the given values in the above equation
V₁ = 9 x 10⁹ x 30 / 0.3
= 1.5 x 10¹² J
And,
V₂ = 1.5 x 10¹² J
The energy stored in it is,
W = V₂ - V₁
= 0
Hence, the energy stored in the charge is, W = 0
Answer:
Explanation:
Thinking about the logics it can but it may be dim because 1.12 is lower than 2,5v so this will mean u lamp may not work or may work very dimely due to the low voltage it is receiving.
D. Jupiter has the highest amount of gravity in our solar system