Answer:
The speed of transverse waves in this string is 519.61 m/s.
Explanation:
Given that,
Mass per unit length = 5.00 g/m
Tension = 1350 N
We need to calculate the speed of transverse waves in this string
Using formula of speed of the transverse waves

Where,
= mass per unit length
T = tension
Put the value into the formula


Hence, The speed of transverse waves in this string is 519.61 m/s.
I believe Intangibility is the answer! :P I hope this helps!
Answer:
m = 5.22 kg
Explanation:
The force acting on the bucket is 52.2 N.
We need to find the mass of the bucket.
The force acting on the bucket is given by :
F = mg
g is acceleration due to gravity
m is mass

So, the mass of the bucket is 5.22 kg.
"Copernicus"was the one person among the following choices given in the question that <span>challenged the geocentric model of the solar system. The correct option among all the options that are given in the question is the second option. I hope that this is the answer that has come to your desired help.</span>