Answer:
New volume of the baloon is 0.02325m^3
Explanation:
To answer this question we need to know the ideal gas law, which says:
p•V = n•R•T
p is pressure, V is volume, n is amount of substance (in moles), R is constant value and T is temperature.
Since it's stated that n and T are constant, and we know that R is a constant too, that means that p•V = constant value. Basically, that means that p1•V1 (pressure and volume before the pressure increase) equals to p2•V2 (pressure and volume after the pressure increase).
That means that:
100000 Pa • 0.0279 m^3 = 120000 Pa • V2. Next, V2= 100000•0.0279/120000. So, V2=0.02325m^3.
Answer:
B) the change in momentum.
Explanation:
The impulse is defined as the product between the force applied on an object (F) and the duration of the collision (
):
(1)
We can rewrite the force by using Newton's second law, as the product between mass (m) and acceleration (a):

So, (1) becomes

Now we can also rewrite the acceleration as ratio between the change in velocity and change in time:
. If we substitute into the previous equation, we find

And the quantity
is equivalent to the change in momentum,
.
Answer:
1.
Firstly removing off one strip and it leaves electrons behind, so the strip becomes positively charged.
2. The roll however is not negatively charged because it is "earthed " by the hand holding it, thus excess negatives repel each other away through the hand.
3.Tearing off the next strip and once more it leaves electrons behind, the new strip is also positively charged and will repel the first strip.
4. Then, tear two strips apart and one will leave electrons behind on the other. Meaning that one strip is positive and the other is negative and they will attract each other.
I am going to assume 2.1 metres per second and that we're rounding acceleration due to gravity to -10 metres per second squared. At the highest point, velocity is going to be 0. v= intial velocity + acceleration*time, sub in 0 for velocity, 2.1 for initial velocity and -10 for acceleration to get 0= 2.1-10t. Now solve for t. t=0.21 seconds.