Answer:
Concave Up Interval: ![(- \infty,\frac{-\sqrt{3} }{3} )U(\frac{\sqrt{3} }{3} , \infty)](https://tex.z-dn.net/?f=%28-%20%5Cinfty%2C%5Cfrac%7B-%5Csqrt%7B3%7D%20%7D%7B3%7D%20%29U%28%5Cfrac%7B%5Csqrt%7B3%7D%20%7D%7B3%7D%20%2C%20%5Cinfty%29)
Concave Down Interval: ![(\frac{-\sqrt{3} }{3}, \frac{\sqrt{3} }{3} )](https://tex.z-dn.net/?f=%28%5Cfrac%7B-%5Csqrt%7B3%7D%20%7D%7B3%7D%2C%20%5Cfrac%7B%5Csqrt%7B3%7D%20%7D%7B3%7D%20%29)
General Formulas and Concepts:
<u>Calculus</u>
Derivative of a Constant is 0.
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Quotient Rule: ![\frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%20%5B%5Cfrac%7Bf%28x%29%7D%7Bg%28x%29%7D%20%5D%3D%5Cfrac%7Bg%28x%29f%27%28x%29-g%27%28x%29f%28x%29%7D%7Bg%5E2%28x%29%7D)
Chain Rule: ![\frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
Second Derivative Test:
- Possible Points of Inflection (P.P.I) - Tells us the possible x-values where the graph f(x) may change concavity. Occurs when f"(x) = 0 or undefined
- Points of Inflection (P.I) - Actual x-values when the graph f(x) changes concavity
- Number Line Test - Helps us determine whether a P.P.I is a P.I
Step-by-step explanation:
<u>Step 1: Define</u>
![f(x)=\frac{3}{1+x^2}](https://tex.z-dn.net/?f=f%28x%29%3D%5Cfrac%7B3%7D%7B1%2Bx%5E2%7D)
<u>Step 2: Find 2nd Derivative</u>
- 1st Derivative [Quotient/Chain/Basic]:
![f'(x)=\frac{0(1+x^2)-2x \cdot 3}{(1+x^2)^2}](https://tex.z-dn.net/?f=f%27%28x%29%3D%5Cfrac%7B0%281%2Bx%5E2%29-2x%20%5Ccdot%203%7D%7B%281%2Bx%5E2%29%5E2%7D)
- Simplify 1st Derivative:
![f'(x)=\frac{-6x}{(1+x^2)^2}](https://tex.z-dn.net/?f=f%27%28x%29%3D%5Cfrac%7B-6x%7D%7B%281%2Bx%5E2%29%5E2%7D)
- 2nd Derivative [Quotient/Chain/Basic]:
![f"(x)=\frac{-6(1+x^2)^2-2(1+x^2) \cdot 2x \cdot -6x}{((1+x^2)^2)^2}](https://tex.z-dn.net/?f=f%22%28x%29%3D%5Cfrac%7B-6%281%2Bx%5E2%29%5E2-2%281%2Bx%5E2%29%20%5Ccdot%202x%20%5Ccdot%20-6x%7D%7B%28%281%2Bx%5E2%29%5E2%29%5E2%7D)
- Simplify 2nd Derivative:
![f"(x)=\frac{6(3x^2-1)}{(1+x^2)^3}](https://tex.z-dn.net/?f=f%22%28x%29%3D%5Cfrac%7B6%283x%5E2-1%29%7D%7B%281%2Bx%5E2%29%5E3%7D)
<u>Step 3: Find P.P.I</u>
- Set f"(x) equal to zero:
![0=\frac{6(3x^2-1)}{(1+x^2)^3}](https://tex.z-dn.net/?f=0%3D%5Cfrac%7B6%283x%5E2-1%29%7D%7B%281%2Bx%5E2%29%5E3%7D)
<em>Case 1: f" is 0</em>
- Solve Numerator:
![0=6(3x^2-1)](https://tex.z-dn.net/?f=0%3D6%283x%5E2-1%29)
- Divide 6:
![0=3x^2-1](https://tex.z-dn.net/?f=0%3D3x%5E2-1)
- Add 1:
![1=3x^2](https://tex.z-dn.net/?f=1%3D3x%5E2)
- Divide 3:
![\frac{1}{3} =x^2](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B3%7D%20%3Dx%5E2)
- Square root:
![\pm \sqrt{\frac{1}{3}} =x](https://tex.z-dn.net/?f=%5Cpm%20%5Csqrt%7B%5Cfrac%7B1%7D%7B3%7D%7D%20%3Dx)
- Simplify:
![\pm \frac{\sqrt{3}}{3} =x](https://tex.z-dn.net/?f=%5Cpm%20%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B3%7D%20%20%3Dx)
- Rewrite:
![x= \pm \frac{\sqrt{3}}{3}](https://tex.z-dn.net/?f=x%3D%20%5Cpm%20%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B3%7D)
<em>Case 2: f" is undefined</em>
- Solve Denominator:
![0=(1+x^2)^3](https://tex.z-dn.net/?f=0%3D%281%2Bx%5E2%29%5E3)
- Cube root:
![0=1+x^2](https://tex.z-dn.net/?f=0%3D1%2Bx%5E2)
- Subtract 1:
![-1=x^2](https://tex.z-dn.net/?f=-1%3Dx%5E2)
We don't go into imaginary numbers when dealing with the 2nd Derivative Test, so our P.P.I is
(x ≈ ±0.57735).
<u>Step 4: Number Line Test</u>
<em>See Attachment.</em>
We plug in the test points into the 2nd Derivative and see if the P.P.I is a P.I.
x = -1
- Substitute:
![f"(x)=\frac{6(3(-1)^2-1)}{(1+(-1)^2)^3}](https://tex.z-dn.net/?f=f%22%28x%29%3D%5Cfrac%7B6%283%28-1%29%5E2-1%29%7D%7B%281%2B%28-1%29%5E2%29%5E3%7D)
- Exponents:
![f"(x)=\frac{6(3(1)-1)}{(1+1)^3}](https://tex.z-dn.net/?f=f%22%28x%29%3D%5Cfrac%7B6%283%281%29-1%29%7D%7B%281%2B1%29%5E3%7D)
- Multiply:
![f"(x)=\frac{6(3-1)}{(1+1)^3}](https://tex.z-dn.net/?f=f%22%28x%29%3D%5Cfrac%7B6%283-1%29%7D%7B%281%2B1%29%5E3%7D)
- Subtract/Add:
![f"(x)=\frac{6(2)}{(2)^3}](https://tex.z-dn.net/?f=f%22%28x%29%3D%5Cfrac%7B6%282%29%7D%7B%282%29%5E3%7D)
- Exponents:
![f"(x)=\frac{6(2)}{8}](https://tex.z-dn.net/?f=f%22%28x%29%3D%5Cfrac%7B6%282%29%7D%7B8%7D)
- Multiply:
![f"(x)=\frac{12}{8}](https://tex.z-dn.net/?f=f%22%28x%29%3D%5Cfrac%7B12%7D%7B8%7D)
- Simplify:
![f"(x)=\frac{3}{2}](https://tex.z-dn.net/?f=f%22%28x%29%3D%5Cfrac%7B3%7D%7B2%7D)
This means that the graph f(x) is concave up before
.
x = 0
- Substitute:
![f"(x)=\frac{6(3(0)^2-1)}{(1+(0)^2)^3}](https://tex.z-dn.net/?f=f%22%28x%29%3D%5Cfrac%7B6%283%280%29%5E2-1%29%7D%7B%281%2B%280%29%5E2%29%5E3%7D)
- Exponents:
![f"(x)=\frac{6(3(0)-1)}{(1+0)^3}](https://tex.z-dn.net/?f=f%22%28x%29%3D%5Cfrac%7B6%283%280%29-1%29%7D%7B%281%2B0%29%5E3%7D)
- Multiply:
![f"(x)=\frac{6(0-1)}{(1+0)^3}](https://tex.z-dn.net/?f=f%22%28x%29%3D%5Cfrac%7B6%280-1%29%7D%7B%281%2B0%29%5E3%7D)
- Subtract/Add:
![f"(x)=\frac{6(-1)}{(1)^3}](https://tex.z-dn.net/?f=f%22%28x%29%3D%5Cfrac%7B6%28-1%29%7D%7B%281%29%5E3%7D)
- Exponents:
![f"(x)=\frac{6(-1)}{1}](https://tex.z-dn.net/?f=f%22%28x%29%3D%5Cfrac%7B6%28-1%29%7D%7B1%7D)
- Multiply:
![f"(x)=\frac{-6}{1}](https://tex.z-dn.net/?f=f%22%28x%29%3D%5Cfrac%7B-6%7D%7B1%7D)
- Divide:
![f"(x)=-6](https://tex.z-dn.net/?f=f%22%28x%29%3D-6)
This means that the graph f(x) is concave down between and .
x = 1
- Substitute:
![f"(x)=\frac{6(3(1)^2-1)}{(1+(1)^2)^3}](https://tex.z-dn.net/?f=f%22%28x%29%3D%5Cfrac%7B6%283%281%29%5E2-1%29%7D%7B%281%2B%281%29%5E2%29%5E3%7D)
- Exponents:
![f"(x)=\frac{6(3(1)-1)}{(1+1)^3}](https://tex.z-dn.net/?f=f%22%28x%29%3D%5Cfrac%7B6%283%281%29-1%29%7D%7B%281%2B1%29%5E3%7D)
- Multiply:
![f"(x)=\frac{6(3-1)}{(1+1)^3}](https://tex.z-dn.net/?f=f%22%28x%29%3D%5Cfrac%7B6%283-1%29%7D%7B%281%2B1%29%5E3%7D)
- Subtract/Add:
![f"(x)=\frac{6(2)}{(2)^3}](https://tex.z-dn.net/?f=f%22%28x%29%3D%5Cfrac%7B6%282%29%7D%7B%282%29%5E3%7D)
- Exponents:
![f"(x)=\frac{6(2)}{8}](https://tex.z-dn.net/?f=f%22%28x%29%3D%5Cfrac%7B6%282%29%7D%7B8%7D)
- Multiply:
![f"(x)=\frac{12}{8}](https://tex.z-dn.net/?f=f%22%28x%29%3D%5Cfrac%7B12%7D%7B8%7D)
- Simplify:
![f"(x)=\frac{3}{2}](https://tex.z-dn.net/?f=f%22%28x%29%3D%5Cfrac%7B3%7D%7B2%7D)
This means that the graph f(x) is concave up after
.
<u>Step 5: Identify</u>
Since f"(x) changes concavity from positive to negative at
and changes from negative to positive at
, then we know that the P.P.I's
are actually P.I's.
Let's find what actual <em>point </em>on f(x) when the concavity changes.
![x=\frac{-\sqrt{3}}{3}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B-%5Csqrt%7B3%7D%7D%7B3%7D)
- Substitute in P.I into f(x):
![f(\frac{-\sqrt{3}}{3} )=\frac{3}{1+(\frac{-\sqrt{3} }{3} )^2}](https://tex.z-dn.net/?f=f%28%5Cfrac%7B-%5Csqrt%7B3%7D%7D%7B3%7D%20%29%3D%5Cfrac%7B3%7D%7B1%2B%28%5Cfrac%7B-%5Csqrt%7B3%7D%20%7D%7B3%7D%20%29%5E2%7D)
- Evaluate Exponents:
![f(\frac{-\sqrt{3}}{3} )=\frac{3}{1+\frac{1}{3} }](https://tex.z-dn.net/?f=f%28%5Cfrac%7B-%5Csqrt%7B3%7D%7D%7B3%7D%20%29%3D%5Cfrac%7B3%7D%7B1%2B%5Cfrac%7B1%7D%7B3%7D%20%7D)
- Add:
![f(\frac{-\sqrt{3}}{3} )=\frac{3}{\frac{4}{3} }](https://tex.z-dn.net/?f=f%28%5Cfrac%7B-%5Csqrt%7B3%7D%7D%7B3%7D%20%29%3D%5Cfrac%7B3%7D%7B%5Cfrac%7B4%7D%7B3%7D%20%7D)
- Divide:
![f(\frac{-\sqrt{3}}{3} )=\frac{9}{4}](https://tex.z-dn.net/?f=f%28%5Cfrac%7B-%5Csqrt%7B3%7D%7D%7B3%7D%20%29%3D%5Cfrac%7B9%7D%7B4%7D)
![x=\frac{\sqrt{3}}{3}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B3%7D)
- Substitute in P.I into f(x):
![f(\frac{\sqrt{3}}{3} )=\frac{3}{1+(\frac{\sqrt{3} }{3} )^2}](https://tex.z-dn.net/?f=f%28%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B3%7D%20%29%3D%5Cfrac%7B3%7D%7B1%2B%28%5Cfrac%7B%5Csqrt%7B3%7D%20%7D%7B3%7D%20%29%5E2%7D)
- Evaluate Exponents:
![f(\frac{\sqrt{3}}{3} )=\frac{3}{1+\frac{1}{3} }](https://tex.z-dn.net/?f=f%28%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B3%7D%20%29%3D%5Cfrac%7B3%7D%7B1%2B%5Cfrac%7B1%7D%7B3%7D%20%7D)
- Add:
![f(\frac{\sqrt{3}}{3} )=\frac{3}{\frac{4}{3} }](https://tex.z-dn.net/?f=f%28%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B3%7D%20%29%3D%5Cfrac%7B3%7D%7B%5Cfrac%7B4%7D%7B3%7D%20%7D)
- Divide:
![f(\frac{\sqrt{3}}{3} )=\frac{9}{4}](https://tex.z-dn.net/?f=f%28%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B3%7D%20%29%3D%5Cfrac%7B9%7D%7B4%7D)
<u>Step 6: Define Intervals</u>
We know that <em>before </em>f(x) reaches
, the graph is concave up. We used the 2nd Derivative Test to confirm this.
We know that <em>after </em>f(x) passes
, the graph is concave up. We used the 2nd Derivative Test to confirm this.
Concave Up Interval: ![(- \infty,\frac{-\sqrt{3} }{3} )U(\frac{\sqrt{3} }{3} , \infty)](https://tex.z-dn.net/?f=%28-%20%5Cinfty%2C%5Cfrac%7B-%5Csqrt%7B3%7D%20%7D%7B3%7D%20%29U%28%5Cfrac%7B%5Csqrt%7B3%7D%20%7D%7B3%7D%20%2C%20%5Cinfty%29)
We know that <em>after</em> f(x) <em>passes</em>
, the graph is concave up <em>until</em>
. We used the 2nd Derivative Test to confirm this.
Concave Down Interval: ![(\frac{-\sqrt{3} }{3}, \frac{\sqrt{3} }{3} )](https://tex.z-dn.net/?f=%28%5Cfrac%7B-%5Csqrt%7B3%7D%20%7D%7B3%7D%2C%20%5Cfrac%7B%5Csqrt%7B3%7D%20%7D%7B3%7D%20%29)