Answer:
The sample size 'n' = 76
Step-by-step explanation:
<u>Step(i):-</u>
<em>Given mean of the Population = 33 ounces</em>
<em>Given standard deviation of the Population = 4 ounces</em>
<em>Given the margin of error ( M.E) = 0.9 </em>
The Margin of error is determined by

<em>Level of significance = 0.05</em>
<em>Z₀.₀₅ = 1.96</em>
<u><em>Step(ii):-</em></u>
The Margin of error is


Cross multiplication , we get

√n = 8.711
Squaring on both sides ,we get
n = 75.88≅ 76
<u><em>Conclusion:-</em></u>
<em>The sample size 'n' = 76</em>