1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aivan3 [116]
3 years ago
5

A concession stand at a baseball game sells 3 apples for $2.00. How can you find the cost for 10 apples?

Mathematics
1 answer:
nataly862011 [7]3 years ago
6 0
3 divided by 2 = 1.50
1.50×10=15
You might be interested in
Help Please! Thanks so much if u do
Sati [7]

Answer:

$65

Step-by-step explanation:

Let's add up the flat rate and the cost of four tires:

flat rate + 4($122.57/tire) = $555.28

We are to solve for "flat rate."  First, multiply out 4($122.57/tire), obtaining a tire cost of $490.28 total.  Subtracting this tire cost from the $555.28 Janette paid the shop, we get "flat rate" = $555.28 - $490.28, or $65.

Thus, the installation charge ("flat rate") must have been $65.

7 0
3 years ago
Please helppppp!!!!!!!!
Drupady [299]

Answer:

128 cm^2

Step-by-step explanation:

The area of a trapezoid is given by

A = 1/2 (b1+b2) h

where b1 and b2 are the lengths of the bases and h is the height

A =1/2( 10+22) * 8

A = 1/2 (32)8

  = 128

7 0
2 years ago
Read 2 more answers
Did I get this correct
saveliy_v [14]

Answer:

Yep

Step-by-step explanation:

7 0
2 years ago
If anyone knows about definite integrals for calculus then please I request help! I
kicyunya [14]

Answer:

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 4x^{-2}
  2. [<em>u</em>] Differentiate [Basic Power Rule, Derivative Properties]:                       \displaystyle du = \frac{-8}{x^3} \ dx
  3. [Bounds] Switch:                                                                                           \displaystyle \left \{ {{x = 9 ,\ u = 4(9)^{-2} = \frac{4}{81}} \atop {x = 5 ,\ u = 4(5)^{-2} = \frac{4}{25}}} \right.

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^9_5 {\frac{-8}{x^3}e^\big{4x^{-2}}} \, dx
  2. [Integral] U-Substitution:                                                                              \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^{\frac{4}{81}}_{\frac{4}{25}} {e^\big{u}} \, du
  3. [Integral] Exponential Integration:                                                               \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}(e^\big{u}) \bigg| \limits^{\frac{4}{81}}_{\frac{4}{25}}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8} \bigg( e^\Big{\frac{4}{81}} - e^\Big{\frac{4}{25}} \bigg)
  5. Simplify:                                                                                                         \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

4 0
2 years ago
Write as a fraction in the simplest from 80%
Georgia [21]

Answer:

4/5

Step-by-step explanation:

5 0
3 years ago
Other questions:
  • What is the slope of the line that passes through the points (-3, -4) and (1, 2)?
    11·1 answer
  • An airplane 30,000 feet above the ground begins descending at the rate of 2000 feet per minute. Assume the plane continues at th
    11·2 answers
  • It is known that 5 3x+2
    15·1 answer
  • Write 7/12 as a percentage correct to two decimal places
    15·1 answer
  • A student wanted to construct a 95% confidence interval for the average age of students in her statistics class. She randomly se
    12·1 answer
  • Complete the pairs of corresponding parts if RST TXY. ST =
    14·2 answers
  • A tree is 25 7/12 feet high. Richard cuts off the top 8 7/8 feet. How tall is the tree now?
    15·2 answers
  • Find the slope of a line parallel to the given line. y=4/5x+5
    14·1 answer
  • What is the factored form of x^2-9x+20
    7·1 answer
  • An airplane ascends from the ground at an angle
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!